1.Effect and mechanism of iron-catalyzed oxidative stress on mesenchymal stem cells.
Wen-yi LU ; Ming-feng ZHAO ; Rajbhandary SAJIN ; Nan ZHAO ; Fang XIE ; Xia XIAO ; Juan MU ; Yu-ming LI
Acta Academiae Medicinae Sinicae 2013;35(1):6-12
OBJECTIVETo explore effect of iron overload on the proliferation and apoptosis of mesenchymal stem cell(MSCs) and the possible mechanism.
METHODSIron overload model of MSCs was established by adding ferric ammonium citrae (FAC) into the culture medium at different concentrations (100, 200, 400 Μmol/L) and incubated for different lengths of time (12, 24, 48 h). The levels of labile iron pool (LIP) and reactive oxygen species (ROS) were measured to confirm oxidative stress state in the model. Changes in cell proliferation and apoptosis after iron overload were measured through population double time(DT)and annexin V-PI assay. Finally, the expressions of phosphorylated p38 mitogen activated protein kinase (P-p38MAPK), p38MAPK, protein kinase B (AKT), and p53 were determined through Western blot analysis to investigate which ROS-mediated signaling pathway was involved in this process.
RESULTSThe LIP level of MSCs was significantly increased by FAC treatment at 400 Μmol/L (mean fluorescence intensity 482.49±20.96 vs. 303.88±23.37, P<0.05). The level of intracellular ROS was positively correlated with the concentration of FAC and reached a peak level when cultured with 400 Μmol/L FAC (P<0.05).After treatment with 400 Μmol/L FAC at different time points (12 h, 24 h, and 48 h), the DT of MSCs was (1.47± 0.11) d, (1.80±0.13) d, and (2.04±0.14) d, respectively, which was signifcantly longer than that of the control, which was(1.20±0.05)d (P<0.05).The apoptosis rate was also significantly higher in iron overload group[(3.51±1.17)% vs.(0.66±0.62)%, P<0.05]with consequent increase in the expressions of P-p38MAPK, p38MAPK, and p53 proteins in iron overload group, while no significant difference was found in the expression of AKT.
CONCLUSIONIron overload can inhibit the proliferation of MSCs and induce their apoptosis through the generation of ROS, which is probably due to the stimulation of p38MAPK- p53 signaling pathway.
Apoptosis ; drug effects ; Bone Marrow Cells ; drug effects ; metabolism ; Cell Proliferation ; drug effects ; Cells, Cultured ; Humans ; Iron ; pharmacology ; Mesenchymal Stromal Cells ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Reactive Oxygen Species ; metabolism ; Signal Transduction ; Tumor Suppressor Protein p53 ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
2.Effects of humanized interleukin 21 on anti-leukemic activity of cytokine induced killer cells and the mechanism.
Nan ZHAO ; Ming-feng ZHAO ; Sajin RAJBHANDARY ; Wen-yi LU ; Hai-bo ZHU ; Xia XIAO ; Qi DENG ; Yu-ming LI
Chinese Journal of Hematology 2012;33(10):823-828
OBJECTIVETo explore the effects of humanized interleukin 21 (IL-21) on anti-leukemic activity of cytokine induced killer(CIK) cells derived from peripheral blood(PB) and the mechanism.
METHODSMononuclear cells were separated from peripheral blood and cultured with cytokines to induce CIK cells. Proliferation of CIK cells with or without IL-21 stimulation and their cytotoxic activity against K562 cells was measured by MTT method. IL-21 receptor (IL-21R) and immunophenotypes of CIK cells were measured by flow cytometry. The expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), tumor necrosis factor-β (TNF-β), perforin, granzyme A, granzyme B, FasL and NKG2D mRNA were measured by semi-quantitative RT-PCR. FasL on the surface of CIK cells and intra-cellular perforin and granzyme B of CIK cells were measured by flow cytometry. The concentration of IFN-γ and TNF-α in the cultured supernatant were measured by enzyme immunoassay. JAK-STAT signalling pathway of CIK cells were measured by Western-blot.
RESULTSAfter IL-21 stimulation, the proportion of CIK cells increased from (17.5 ± 4.7)% to (26.5 ± 2.1)%. Cytotoxic activity against K562 cells by CIK cells increased from (22.8 ± 2.8)% to(44.6 ± 8.3)%. The expression of IL-21R increased about 2 folds. The mRNA expression of IFN-γ increased almost 2 folds from (0.3760 ± 0.2358) to (0.7786 ± 0.2493), TNF-α increased almost 2 folds from (0.6557 ± 0.1598) to (1.3145 ± 0.2136), perforin increased almost 1.5 folds from (0.6361 ± 0.1457) to (0.9831 ± 0.1265), granzyme B increased almost 2 folds from (0.4084 ± 0.1589) to (0.7319 ± 0.1639), FasL increased almost 2 folds from (0.4015 ± 0.2842) to (0.7381 ± 0.2568), the expression of granzyme A, TNF-β and NKG2D were similar with control. Flow cytometry analysis showed that the expression of FasL of CIK cells was higher than that of control (0.19% vs 0.04%), the expression of perforin increased from 35.28% to 53.16%, and the expression of granzyme B increased from 43.16% to 78.82%. The concentration of IFN-γ in the culture supernatant increased almost 2 folds from (25.8 ± 6.1) ng/L to (56.0 ± 2.3) ng/L, and TNF-α increased almost 3 folds from (5.64 ± 0.61) µg/L to (15.14 ± 0.93) µg/L. Western blot showed that the expression of STAT1 and STAT5a had no significant differences, but the expression of STAT3 and STAT5b were higher than that of control.
CONCLUSIONHumanized IL-21 could enhance the anti-leukemic activity of CIK cells via increasing IL-21R, perforin, granzyme B, FasL, IFN-γ and TNF-α, as well as activating JAK-STAT signaling pathway. These data indicate that IL-21 has a potential clinical value in the enhancement of anti-leukemic immunotherapy.
Cells, Cultured ; Cytokine-Induced Killer Cells ; cytology ; drug effects ; Fas Ligand Protein ; metabolism ; Granzymes ; metabolism ; Humans ; Interferon-gamma ; metabolism ; Interleukins ; pharmacology ; K562 Cells ; Perforin ; metabolism ; Receptors, Interleukin-21 ; metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha ; metabolism