1.Engineering and application of Komagataella phaffii as a cell factory.
Yufei LIU ; Ying CAO ; Liye CHANG ; Conghui SHAN ; Kun XU
Chinese Journal of Biotechnology 2023;39(11):4376-4396
Nowadays, engineered Komagataella phaffii plays an important role in the biosynthesis of small molecule metabolites and protein products, showing great potential and value in industrial productions. With the development and application of new editing tools such as CRISPR/Cas9, it has become possible to engineer K. phaffii into a cell factory with high polygenic efficiency. Here, the genetic manipulation techniques and objectives for engineering K. phaffii are first summarized. Secondly, the applications of engineered K. phaffii as a cell factory are introduced. Meanwhile, the advantages as well as disadvantages of using engineered K. phaffii as a cell factory are discussed and future engineering directions are prospected. This review aims to provide a reference for further engineering K. phaffii cell factory, which is supposed to facilitate its application in bioindustry.
Saccharomycetales/genetics*
;
Genetic Techniques
2.Discovery and functional verification of endogenous glucanases for scleroglucan hydrolysis in Sclerotium rolfsii.
Weizhu ZENG ; Runqing TAN ; Jingwen ZHOU
Chinese Journal of Biotechnology 2021;37(1):207-217
Scleroglucan is a high-molecular water-soluble microbial exopolysaccharide and mainly applied in the fields of petroleum, food, medicine and cosmetics. The high molecular weight of scleroglucan produced by microbial fermentation leads to low solubility, high viscosity and poor dispersibility, thus bringing a series of difficulties to extraction, preservation and application. It is important to explore suitable degradation method to adjust the molecular weight of scleroglucan for expanding its industrial application. Taking Sclerotium rolfsii WSH-G01 as a model strain, in which functional annotations of the glucanase genes were conducted by whole genome sequencing. Based on design of culture system for culture system for differential expression of β-glucanase, endogenous β-glucanase genes in S. rolfsii WSH-G01 were excavated by transcriptomics analysis. Functions of these potential hydrolases were further verified. Finally, 14 potential endogenous hydrolase genes were obtained from S. rolfsii. After heterologous overexpression in Pichia pastoris, 10 soluble enzymes were obtained and 5 of them had the activity of laminarin hydrolysis by SDS-PAGE and enzyme activity analysis. Further investigation of the 5 endogenous hydrolases on scleroglucan degradation showed that enzyme GME9860 has positive hydrolysis effect. The obtained results provide references not only for obtaining low and medium molecular weight of scleroglucan with enzymatic hydrolysis, but also for producing different molecular weight of scleroglucan during S. rolfsii fermentation process with metabolic engineering.
Basidiomycota/genetics*
;
Glucans
;
Hydrolysis
;
Saccharomycetales
3.Development and evaluation of a novel method for rapid screening of Pichia pastoris strains capable of efficiently expressing recombinant proteins.
Yongan CHEN ; Qingyan YUAN ; Cheng LI ; Shuli LIANG ; Ying LIN
Chinese Journal of Biotechnology 2021;37(3):939-949
Pichia pastoris is one of the most widely used recombinant protein expression systems. In this study, a novel method for rapid screening of P. pastoris strains capable of efficiently expressing recombinant proteins was developed. Firstly, the ability to express recombinant proteins of the modified strain GS115-E in which a functional Sec63-EGFP (Enhanced green fluorescent protein) fusion protein replaced the endogenous endoplasmic reticulum transmembrane protein Sec63 was tested. Next, the plasmids carrying different copy numbers of phytase (phy) gene or xylanase (xyn) gene were transformed into GS115-E to obtain recombinant strains with different expression levels of phytase or xylanase, and the expression levels of EGFP and recombinant proteins in different strains were tested. Finally, a flow cytometer sorter was used to separate a mixture of cells with different phytase expression levels into sub-populations according to green fluorescence intensity. A good linear correlation was found between the fluorescence intensities of EGFP and the expression levels of the recombinant proteins in the recombinant strains (0.8<|R|<1). By using the flow cytometer, high-yielding P. pastoris cells were efficiently screened from a mixture of cells. The expression level of phytase of the selected high-fluorescence strains was 4.09 times higher than that of the low-fluorescence strains after 120 h of methanol induction. By detecting the EGFP fluorescence intensity instead of detecting the expression level and activity of the recombinant proteins in the recombinant strains, the method developed by the present study possesses the greatly improved performance of convenience and versatility in screening high-yielding P. pastoris strains. Combining the method with high-throughput screening instruments and technologies, such as flow cytometer and droplet microfluidics, the speed and throughput of this method will be further increased. This method will provide a simple and rapid approach for screening and obtaining P. pastoris with high abilities to express recombinant proteins.
6-Phytase/genetics*
;
Pichia/genetics*
;
Plasmids
;
Recombinant Proteins/genetics*
;
Saccharomycetales
4.Production of high-purity recombinant human vascular endothelial growth factor (rhVEGF165) by Pichia pastoris.
Weijie ZHOU ; Fengmei WU ; Dongsheng YAO ; Chunfang XIE
Chinese Journal of Biotechnology 2021;37(11):4083-4094
Vascular endothelial growth factor (VEGF165) is a highly specific vascular endothelial growth factor that can be used to treat many cardiovascular diseases. The development of anti-tumor drugs and disease detection reagents requires highly pure VEGF165 (at least 95% purity). To date, the methods for heterologous expression and purification of VEGF165 require multiple purification steps, but the product purity remains to be low. In this study, we optimized the codons of the human VEGF165 gene (vegf165) according to the yeast codon preference. Based on the Pichia pastoris BBPB vector, we used the Biobrick method to construct a five-copy rhVEGF165 recombinant expression vector using Pgap as the promoter. In addition, a histidine tag was added to the vector. Facilitated by the His tag and the heparin-binding domain of VEGF165, we were able to obtain highly pure rhVEGF165 (purity > 98%) protein using two-step affinity chromatography. The purified rhVEGF165 was biologically active, and reached a concentration of 0.45 mg/mL. The new design of the expression vector enables production of active and highly pure rhVEGF165 ) in a simplified purification process, the purity of the biologically active natural VEGF165 reached the highest reported to date.
Codon/genetics*
;
Humans
;
Pichia/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
;
Vascular Endothelial Growth Factor A/genetics*
;
Vascular Endothelial Growth Factors
5.Research progress on spindle assembly checkpoint gene BubR1.
Zhao-jun CHEN ; Feng LI ; Jun YANG
Journal of Zhejiang University. Medical sciences 2011;40(4):446-450
BubR1 gene is a homologue of the mitotic checkpoint gene Mad3 in budding yeast which is highly conserved in mammalian. BubR1 protein is a key component mediating spindle assembly checkpoint activation. BubR1 safeguards accurate chromosome segregation during cell division by monitoring kinetochore-microtubule attachments and kinetochore tension. There is a dose-dependent effect between the level of BubR1 expression and the function of spindle assembly checkpoint. BubR1-deficient would lead to mitotic progression with compromised spindle assembly checkpoint because cells become progressively aneuploid. Recently, it has been reported that BubR1 also plays important roles in meiotic, DNA damage response, cancer, infertility, and early aging. This review briefly summarizes the current progresses in studies of BubR1 function.
Cell Cycle Proteins
;
genetics
;
metabolism
;
physiology
;
Chromosome Segregation
;
genetics
;
physiology
;
Kinetochores
;
metabolism
;
physiology
;
Mitosis
;
genetics
;
physiology
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
physiology
;
Saccharomycetales
;
genetics
;
physiology
;
Spindle Apparatus
;
genetics
;
metabolism
;
physiology