1.URA3 affects artemisinic acid production by an engineered Saccharomyces cerevisiae in pilot-scale fermentation.
Weiwei GUO ; Limei AI ; Dong HU ; Yajun CHEN ; Mengxin GENG ; Linghui ZHENG ; Liping BAI
Chinese Journal of Biotechnology 2022;38(2):737-748
CRISPR/Cas9 has been widely used in engineering Saccharomyces cerevisiae for gene insertion, replacement and deletion due to its simplicity and high efficiency. The selectable markers of CRISPR/Cas9 systems are particularly useful for genome editing and Cas9-plasmids removing in yeast. In our previous research, GAL80 gene has been deleted by the plasmid pML104-mediated CRISPR/Cas9 system in an engineered yeast, in order to eliminate the requirement of galactose supplementation for induction. The maximum artemisinic acid production by engineered S. cerevisiae 1211-2 (740 mg/L) was comparable to that of the parental strain 1211 without galactose induction. Unfortunately, S. cerevisiae 1211-2 was inefficient in the utilization of the carbon source ethanol in the subsequent 50 L pilot fermentation experiment. The artemisinic acid yield in the engineered S. cerevisiae 1211-2 was only 20%-25% compared with that of S. cerevisiae 1211. The mutation of the selection marker URA3 was supposed to affect the growth and artemisinic acid production. A ura3 mutant was successfully restored by a recombinant plasmid pML104-KanMx4-u along with a 90 bp donor DNA, resulting in S. cerevisiae 1211-3. This mutant could grow normally in a fed-batch fermentor with mixed glucose and ethanol feeding, and the final artemisinic acid yield (> 20 g/L) was comparable to that of the parental strain S. cerevisiae 1211. In this study, an engineered yeast strain producing artemisinic acid without galactose induction was obtained. More importantly, it was the first report showing that the auxotrophic marker URA3 significantly affected artemisinic acid production in a pilot-scale fermentation with ethanol feeding, which provides a reference for the production of other natural products in yeast chassis.
Artemisinins
;
Fermentation
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
2.Effect of RIM21 gene disruption on flocculation of lager yeast.
Xuefei ZHOU ; Jingyi SUO ; Dan HOU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2021;37(12):4373-4381
Lager yeast is the most popular yeast strain used for beer production in China. The flocculation of yeast plays an important role in cell separation at the end of fermentation. Therefore, appropriately enhancing the flocculation capability of the lager yeast without affecting its fermentation performance would be desirable for beer industry. Our previous study showed that the defect of gene RIM21 might contribute to the enhanced flocculation capability of a lager yeast G03. To further investigate the role of the RIM21 gene in flocculation of strain G03, this study constructed a RIM21-deleted mutant strain G03-RIM21Δ through homologous recombination. Deletion of RIM21 improved the flocculation capability of strain G03 during wort fermentation at 11 °C without changing its fermentation performance significantly. The expression of FLO5, Lg-FLO1 and some other genes involved in cell wall integrity pathway were up-regulated in strain G03-RIM21Δ. In addition, the disruption of RIM21 enhanced resistance of yeast cells to cell wall inhibitors. These results provide a basis for elucidating the flocculation mechanism of lager yeast under low-temperature fermentation conditions.
Beer
;
Fermentation
;
Flocculation
;
Receptors, Cell Surface
;
Saccharomyces/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
3.Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae.
Tao LUAN ; Mengqi YIN ; Ming WANG ; Xiulong KANG ; Jianzhi ZHAO ; Xiaoming BAO
Chinese Journal of Biotechnology 2023;39(6):2334-2358
As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Golgi Apparatus/metabolism*
;
Metabolic Engineering
;
Vacuoles/metabolism*
4.Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae.
Rong-Sheng LI ; Dong WANG ; Yu-Song SHI ; Li-Ping XU ; Xue-Li ZHANG ; Kou WANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2022;47(4):897-905
Monoterpenes are widely used in cosmetics, food, medicine, agriculture and other fields. With the development of synthetic biology, it is considered as a potential way to create microbial cell factories to produce monoterpenes. Engineering Saccharomyces cerevisiae to produce monoterpenes has been a research hotspot in synthetic biology. In S. cerevisiae, the production of geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) is catalyzed by a bifunctional enzyme farnesyl pyrophosphate synthetase(encoded by ERG20 gene) which is inclined to synthesize FPP essential for yeast growth. Therefore, reasonable control of FPP synthesis is the basis for efficient monoterpene synthesis in yeast cell factories. In order to achieve dynamic control from GPP to FPP biosynthesis in S. cerevisiae, we obtained a novel chassis strain HP001-pERG1-ERG20 by replacing the ERG20 promoter of the chassis strain HP001 with the promoter of cyclosqualene cyclase(ERG1) gene. Further, we reconstructed the metabolic pathway by using GPP and neryl diphosphate(NPP), cis-GPP as substrates in HP001-pERG1-ERG20. The yield of GPP-derived linalool increased by 42.5% to 7.6 mg·L~(-1), and that of NPP-derived nerol increased by 1 436.4% to 8.3 mg·L~(-1). This study provides a basis for the production of monoterpenes by microbial fermentation.
Fermentation
;
Geranyltranstransferase/genetics*
;
Monoterpenes/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
5.Higher alcohols metabolism by Saccharomyces cerevisiae: a mini review.
Zhongguan SUN ; Lin LIU ; Yaping WANG ; Xueshan WANG ; Dongguang XIAO
Chinese Journal of Biotechnology 2021;37(2):429-447
Higher alcohols are one of the main by-products of Saccharomyces cerevisiae in brewing. High concentration of higher alcohols in alcoholic beverages easily causes headache, thirst and other symptoms after drinking. It is also the main reason for chronic drunkenness and difficulty in sobering up after intoxication. The main objective of this review is to present an overview of the flavor characteristics and metabolic pathways of higher alcohols as well as the application of mutagenesis breeding techniques in the regulation of higher alcohol metabolism in S. cerevisiae. In particular, we review the application of metabolic engineering technology in genetic modification of amino transferase, α-keto acid metabolism, acetate metabolism and carbon-nitrogen metabolism. Moreover, key challenges and future perspectives of realizing optimization of higher alcohols metabolism are discussed. This review is intended to provide a comprehensive understanding of metabolic regulation system of higher alcohols in S. cerevisiae and to provide insights into the rational development of the excellent industrial S. cerevisiae strains producing higher alcohols.
Alcoholic Beverages
;
Alcohols/analysis*
;
Fermentation
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
6.Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae.
Shuyi ZHAO ; Bing YUAN ; Xueqing WANG ; Hongqi CHEN ; Xinqing ZHAO ; Fengwu BAI
Chinese Journal of Biotechnology 2021;37(12):4293-4302
Acetic acid is a common inhibitor present in lignocellulosic hydrolysate. Development of acetic acid tolerant strains may improve the production of biofuels and bio-based chemicals using lignocellulosic biomass as raw materials. Current studies on stress tolerance of yeast Saccharomyces cerevisiae have mainly focused on transcription control, but the role of transfer RNA (tRNA) was rarely investigated. We found that some tRNA genes showed elevated transcription levels in a stress tolerant yeast strain. In this study, we further investigated the effects of overexpressing an arginine transfer RNA gene tR(ACG)D and a leucine transfer RNA gene tL(CAA)K on cell growth and ethanol production of S. cerevisiae BY4741 under acetic acid stress. The tL(CAA)K overexpression strain showed a better growth and a 29.41% higher ethanol productivity than that of the control strain. However, overexpression of tR(ACG)D showed negative influence on cell growth and ethanol production. Further studies revealed that the transcriptional levels of HAA1, MSN2, and MSN4, which encode transcription regulators related to stress tolerance, were up-regulated in tL(CAA)K overexpressed strain. This study provides an alternative strategy to develop robust yeast strains for cellulosic biorefinery, and also provides a basis for investigating how yeast stress tolerance is regulated by tRNA genes.
Acetic Acid
;
DNA-Binding Proteins/metabolism*
;
Fermentation
;
Leucine
;
RNA, Transfer/genetics*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Transcription Factors
7.Expression of yeast acyl-delta9 desaturase for fatty acid biosynthesis in tobacco.
Jin'ai XUE ; Xue MAO ; Yongmei WU ; Zhirong YANG ; Xiaoyun JIA ; Li ZHANG ; Jiping WANG ; Aiqin YUE ; Xiping SUN ; Runzhi LI
Chinese Journal of Biotechnology 2013;29(5):630-645
Palmitoleic acid (16:1delta9), an unusual monounsaturated fatty acid, is highly valued for human nutrition, medication and industry. Plant oils containing large amounts of palmitoleic acid are the ideal resource for biodiesel production. To increase accumulation of palmitoleic acid in plant tissues, we used a yeast (Saccharomyees cerevisiae) acyl-CoA-delta9 desaturase (Scdelta9D) for cytosol- and plastid-targeting expression in tobacco (Nicotiana tabacum L.). By doing this, we also studied the effects of the subcellular-targeted expression of this enzyme on lipid synthesis and metabolism in plant system. Compared to the wild type and vector control plants, the contents of monounsaturated palmitoleic (16:1delta9) and cis-vaccenic (18:1delta11) were significantly enhanced in the Scdelta9D-transgenic leaves whereas the levels of saturated palmitic acid (16:0) and polyunsaturated linoleic (18:2) and linolenic (18:3) acids were reduced in the transgenics. Notably, the contents of 16:1delta9 and 18:1delta11 in the Scdelta9D plastidal-expressed leaves were 2.7 and 1.9 folds of that in the cytosolic-expressed tissues. Statistical analysis appeared a negative correlation coefficient between 16:0 and 16:1delta9 levels. Our data indicate that yeast cytosolic acyl-CoA-delta9 desaturase can convert palmitic (16:0) into palmitoleic acid (16:1delta9) in high plant cells. Moreover, this effect of the enzyme is stronger with the plastid-targeted expression than the cytosol-target expression. The present study developed a new strategy for high accumulation of omega-7 fatty acids (16:1delta9 andl8:1delta11) in plant tissues by protein engineering of acyl-CoA-delta9 desaturase. The findings would particularly benefit the metabolic assembly of the lipid biosynthesis pathway in the large-biomass vegetative organs such as tobacco leaves for the production of high-quality biodiesel.
Fatty Acid Desaturases
;
genetics
;
metabolism
;
Fatty Acids, Monounsaturated
;
metabolism
;
Plants, Genetically Modified
;
Recombinant Proteins
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
enzymology
;
Saccharomyces cerevisiae Proteins
;
genetics
;
metabolism
;
Tobacco
;
genetics
;
metabolism
8.Quantitative proteomics reveal the potential biological functions of the deubiquitinating enzyme Ubp14 in Saccharomyces cerevisiae.
Zhaodi LI ; Qiuyan LAN ; Yanchang LI ; Cong XU ; Lei CHANG ; Ping XU ; Changzhu DUAN
Chinese Journal of Biotechnology 2022;38(10):3901-3913
Ubiquitination is one of the reversible protein post-translational modifications, in which ubiquitin molecules bind to the target protein in a cascade reaction of ubiquitin activating enzymes, ubiquitin conjugating enzymes, and ubiquitin ligases. The deubiquitinating enzymes (DUBs) remove ubiquitin residues from the substrates, which play key roles in the formation of mature ubiquitin, the removal and trimming of ubiquitin chains, as well as the recycling of free ubiquitin chains. Ubp14, a member of the ubiquitin specific proteases family in Saccharomyces cerevisiae, is mainly responsible for the recycling of intracellular free ubiquitin chains. To investigate its global biological function, a ubp14∆ mutant was constructed by homologous recombination technique. The growth rate of ubp14∆ mutant was lower than that of the wild-type (WT) strain. Using stable isotope labeling by amino acids in cell culture (SILAC) combined with deep coverage proteomics analysis, the differentially expressed proteins of ubp14∆ mutant relative to the wild-type strain were systematically analyzed. A total of 3 685 proteins were identified in this study, and 109 differentially expressed proteins were filtered out by statistical analysis. Gene ontology analysis found that differentially expressed proteins caused by Ubp14 loss were mainly involved in amino acid metabolism, REDOX, heat shock stress and etc, which shed light on the broad biological function of this DUB. This study provides highly reliable proteomic data for further exploring the biological functions of the deubiquitination enzyme Ubp14, and further understanding the relationship between the free ubiquitin homeostasis and biological process regulation.
Saccharomyces cerevisiae/metabolism*
;
Proteomics
;
Endopeptidases/metabolism*
;
Ubiquitin/metabolism*
;
Ubiquitination
;
Proteins/metabolism*
;
Deubiquitinating Enzymes/metabolism*
;
Biological Phenomena
9.Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae.
Han WANG ; Liang ZHANG ; Guiyang SHI
Chinese Journal of Biotechnology 2014;30(9):1381-1389
Glycerol is the main byproduct in ethanol production by Saccharomyces cerevisiae. In order to improve ethanol yield and the substrate conversion, a cassette about 4.5 kb for gene homologous recombination, gpd2Δ::PGK1(PT)-POS5-HyBR, was constructed and transformed into the haploid strain S. cerevisiae S1 (MATa) to replace the GPD2 gene by POS5 gene. The NADH kinase gene POS5 was successfully over expressed in the recombinant strain S. cerevisiae S3. Comparing with the parent strain, the recombinant strain S. cerevisiae S3 exhibited an 8% increase in ethanol production and a 33.64% decrease in glycerol production in the conical flask fermentation with an initiatory glucose concentration of 150 g/L. Overexpression of NADH kinase gene seems effective in reducing glycerol production and increasing ethanol yield.
Ethanol
;
chemistry
;
Fermentation
;
Glycerol
;
chemistry
;
Industrial Microbiology
;
Mitochondrial Proteins
;
genetics
;
metabolism
;
Phosphotransferases (Alcohol Group Acceptor)
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
genetics
;
metabolism
10.The effect of NAD kinase homologues on the beta-oxidation of unsaturated fatty acids with the double bond at an even position in Saccharomyces cerevisiae.
Chinese Journal of Biotechnology 2006;22(4):667-671
ATP-NAD kinase phosphorylates NAD to produce NADP by using ATP, whereas ATP-NADH kinase phosphorylates both NAD and NADH. Three NAD kinase homologues, namely, Utr1p, Pos5p and Utr1p, exist in the yeast Saccharomyces cerevisiae, which were all confirmed as ATP-NADH kinases and found to be important to supply NADP(H) for yeast cells. In S. cerevisiae, fatty acid beta-oxidation is restricted to peroxisomes and peroxisomal NADPH is required for beta-oxidation of unsaturated fatty acids with the double bonds at even positions. Single and double gene disruption strains of NAD kinase genes, i.e., utr1, pos5, yef1, utr1yef1, utr1pos5 and yef1pos5 were constructed by PCR-targeting method. The utilization ability of these mutants for unsaturated fatty acids with the double bonds at even or uneven positions was examined, with wild type BY4742 as positive control cell, and fatty-acyl-CoA oxidase gene deletion mutant (fox1) and peroxisomal NADP-dependent isocitrate dehydrogenase isoenzymes gene deletion mutant (idp3) as negative control cells. The results indicated that the NAD kinase homologues, especially Pos5p, were critical for supplying NADP and then NADPH in peroxisomal matrix. NADP, which was supplied mainly by Utr1p, Pos5p and Yef1p, particularly by Pos5p, was proposed to be able to transfer from outside of peroxisome into peroxisomal matrix and then converted to NADPH by Idp3p.
Fatty Acids, Unsaturated
;
metabolism
;
Mitochondrial Proteins
;
physiology
;
NADP
;
metabolism
;
Oxidation-Reduction
;
Phosphotransferases (Alcohol Group Acceptor)
;
physiology
;
Saccharomyces cerevisiae
;
growth & development
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
physiology