1.Retroperitoneal liposarcoma in an adult patient with Down syndrome
Ryan YUl ; Karen D’SILVA ; Subhas GANGULI ; Alexander Andu CORET ; Franco DENARDI
The Malaysian Journal of Pathology 2011;33(2):119-124
Retroperitoneal liposarcoma is a rare solid tumour of mesenchymal origin with an incidence of 2.5
per million population. We report what is, to the best of our knowledge, the fi rst case in the English
literature of retroperitoneal liposarcoma in an adult patient with Down syndrome. The tumour was
surgically resected with no use of adjuvant chemotherapy or radiation. No recurrence was found at
follow-up 2 months postoperatively. Clinicians should consider retroperitoneal liposarcoma in the
differential diagnosis of abdominal distention in adult patients with Down syndrome.
2.Three Rare Concurrent Complications of Tertiary Hyperparathyroidism: Maxillary Brown Tumor, Uremic Leontiasis Ossea, and Hungry Bone Syndrome
Natalie BRANSKY ; Neena Ramesh IYER ; Sophie Mestman CANNON ; Alexander Hanlin TYAN ; Praneet MYLAVARAPU ; Ryan OROSCO ; David Brain HOM ; Alan Ali MOAZZAM
Journal of Bone Metabolism 2020;27(3):217-226
A 48-year-old woman in her 40’s with end-stage renal disease and tertiary hyperparathyroidism (HPT) presented for a rapidly progressive maxillary tumor. Initial workup was notable for elevated intact parathyroid hormone (PTH) and diffuse thickening of skull and facial bones on computed tomography, and maxillary tumor biopsy with multinucleated giant cells. She underwent subtotal parathyroidectomy (with removal of a parathyroid adenoma and 2 hyperplastic glands) and partial resection of maxillary brown tumor. The patient’s post-operative course was complicated by hungry bone syndrome, with hypocalcemia refractory to aggressive calcium repletion. Teriparatide (recombinant PTH) was utilized with rapid resolution of hypocalcemia. To our knowledge, this is the first case of maxillary brown tumor in tertiary HPT to be reported in the USA. This case also supports teriparatide as a novel therapeutic for hungry bone syndrome refractory to aggressive calcium repletion.
3.Optimizing suction force in mechanical thrombectomy: Priming the aspiration tubing with air versus saline
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Javier BRAVO ; Jeffrey A. STEINBERG ; J. Scott PANNELL ; Alexander A. KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):260-264
Objective:
We sought to investigate how priming the tube between air versus air mixed with saline ex vivo influenced suction force. We examined how priming the tube influenced peak suction force and time to achieve peak suction force between both modalities.
Methods:
Using a Dwyer Instruments (Dwyer Instruments Inc., Michigan City, IN, USA), INC Digitial Pressure Gauge, we were able to connect a .072 inch aspiration catheter to a rotating hemostatic valve and to aspiration tubing. We recorded suction force measured in negative inches of Mercury (inHg) over 10 iterations between having the aspiration tube primed with air alone versus air mixed with saline. A test was used to compare results between both modalities.
Results:
Priming the tube with air alone compared to air mixed with saline was found to have an increased average max suction force (-28.60 versus -28.20 in HG, p<0.01). We also identified a logarithmic curve of suction force across time in which time to maximal suction force was more prompt with air compared with air mixed with saline (13.8 seconds versus 21.60 seconds, p<0.01).
Conclusions
Priming the tube with air compared to air mixed with saline suggests that not only is increased maximal suction force achieved, but also the time required to achieve maximal suction force is less. This data suggests against priming the aspiration tubing with saline and suggests that the first pass aspiration primed with air may have the greatest suction force.
4.ALARA principles in practice: reduced frame and pulse rates for middle meningeal artery embolization
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Sarath PATHURI ; Brian R. HIRSHMAN ; Javier A. BRAVO ; Jeffrey A. STEINBERG ; Jeffrey S. PANNELL ; Alexander KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):293-297
Objective:
As the prevalence of neuroendovascular interventions increases, it is critical to mitigate unnecessary radiation for patients, providers, and health care staff. Our group previously demonstrated reduced radiation dose and exposure during diagnostic angiography by reducing the default pulse and frame rates. We applied the same technique for basic neuroendovascular interventions.
Methods:
We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. We studied consecutive, unilateral middle meningeal artery embolizations treated with particles. Total radiation dose, radiation per angiographic run, total radiation exposure, and exposure per run were calculated. Multivariable log-linear regression was performed to account for patient body mass index (BMI), number of angiographic runs, and number of vessels catheterized.
Results:
A total of 20 consecutive, unilateral middle meningeal artery embolizations were retrospectively analyzed. The radiation reduction protocol was associated with a 39.2% decrease in the total radiation dose and a 37.1% decrease in radiation dose per run. The protocol was associated with a 41.6% decrease in the total radiation exposure and a 39.5% decrease in exposure per run.
Conclusions
Radiation reduction protocols can be readily applied to neuroendovascular interventions without increasing overall fluoroscopy time and reduce radiation dose and exposure by 39.2% and 41.6% respectively. We strongly encourage all interventionalists to be cognizant of pulse rate and frame rate when performing routine interventions.
5.Optimizing suction force in mechanical thrombectomy: Priming the aspiration tubing with air versus saline
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Javier BRAVO ; Jeffrey A. STEINBERG ; J. Scott PANNELL ; Alexander A. KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):260-264
Objective:
We sought to investigate how priming the tube between air versus air mixed with saline ex vivo influenced suction force. We examined how priming the tube influenced peak suction force and time to achieve peak suction force between both modalities.
Methods:
Using a Dwyer Instruments (Dwyer Instruments Inc., Michigan City, IN, USA), INC Digitial Pressure Gauge, we were able to connect a .072 inch aspiration catheter to a rotating hemostatic valve and to aspiration tubing. We recorded suction force measured in negative inches of Mercury (inHg) over 10 iterations between having the aspiration tube primed with air alone versus air mixed with saline. A test was used to compare results between both modalities.
Results:
Priming the tube with air alone compared to air mixed with saline was found to have an increased average max suction force (-28.60 versus -28.20 in HG, p<0.01). We also identified a logarithmic curve of suction force across time in which time to maximal suction force was more prompt with air compared with air mixed with saline (13.8 seconds versus 21.60 seconds, p<0.01).
Conclusions
Priming the tube with air compared to air mixed with saline suggests that not only is increased maximal suction force achieved, but also the time required to achieve maximal suction force is less. This data suggests against priming the aspiration tubing with saline and suggests that the first pass aspiration primed with air may have the greatest suction force.
6.ALARA principles in practice: reduced frame and pulse rates for middle meningeal artery embolization
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Sarath PATHURI ; Brian R. HIRSHMAN ; Javier A. BRAVO ; Jeffrey A. STEINBERG ; Jeffrey S. PANNELL ; Alexander KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):293-297
Objective:
As the prevalence of neuroendovascular interventions increases, it is critical to mitigate unnecessary radiation for patients, providers, and health care staff. Our group previously demonstrated reduced radiation dose and exposure during diagnostic angiography by reducing the default pulse and frame rates. We applied the same technique for basic neuroendovascular interventions.
Methods:
We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. We studied consecutive, unilateral middle meningeal artery embolizations treated with particles. Total radiation dose, radiation per angiographic run, total radiation exposure, and exposure per run were calculated. Multivariable log-linear regression was performed to account for patient body mass index (BMI), number of angiographic runs, and number of vessels catheterized.
Results:
A total of 20 consecutive, unilateral middle meningeal artery embolizations were retrospectively analyzed. The radiation reduction protocol was associated with a 39.2% decrease in the total radiation dose and a 37.1% decrease in radiation dose per run. The protocol was associated with a 41.6% decrease in the total radiation exposure and a 39.5% decrease in exposure per run.
Conclusions
Radiation reduction protocols can be readily applied to neuroendovascular interventions without increasing overall fluoroscopy time and reduce radiation dose and exposure by 39.2% and 41.6% respectively. We strongly encourage all interventionalists to be cognizant of pulse rate and frame rate when performing routine interventions.
7.Optimizing suction force in mechanical thrombectomy: Priming the aspiration tubing with air versus saline
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Javier BRAVO ; Jeffrey A. STEINBERG ; J. Scott PANNELL ; Alexander A. KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):260-264
Objective:
We sought to investigate how priming the tube between air versus air mixed with saline ex vivo influenced suction force. We examined how priming the tube influenced peak suction force and time to achieve peak suction force between both modalities.
Methods:
Using a Dwyer Instruments (Dwyer Instruments Inc., Michigan City, IN, USA), INC Digitial Pressure Gauge, we were able to connect a .072 inch aspiration catheter to a rotating hemostatic valve and to aspiration tubing. We recorded suction force measured in negative inches of Mercury (inHg) over 10 iterations between having the aspiration tube primed with air alone versus air mixed with saline. A test was used to compare results between both modalities.
Results:
Priming the tube with air alone compared to air mixed with saline was found to have an increased average max suction force (-28.60 versus -28.20 in HG, p<0.01). We also identified a logarithmic curve of suction force across time in which time to maximal suction force was more prompt with air compared with air mixed with saline (13.8 seconds versus 21.60 seconds, p<0.01).
Conclusions
Priming the tube with air compared to air mixed with saline suggests that not only is increased maximal suction force achieved, but also the time required to achieve maximal suction force is less. This data suggests against priming the aspiration tubing with saline and suggests that the first pass aspiration primed with air may have the greatest suction force.
8.ALARA principles in practice: reduced frame and pulse rates for middle meningeal artery embolization
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Sarath PATHURI ; Brian R. HIRSHMAN ; Javier A. BRAVO ; Jeffrey A. STEINBERG ; Jeffrey S. PANNELL ; Alexander KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):293-297
Objective:
As the prevalence of neuroendovascular interventions increases, it is critical to mitigate unnecessary radiation for patients, providers, and health care staff. Our group previously demonstrated reduced radiation dose and exposure during diagnostic angiography by reducing the default pulse and frame rates. We applied the same technique for basic neuroendovascular interventions.
Methods:
We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. We studied consecutive, unilateral middle meningeal artery embolizations treated with particles. Total radiation dose, radiation per angiographic run, total radiation exposure, and exposure per run were calculated. Multivariable log-linear regression was performed to account for patient body mass index (BMI), number of angiographic runs, and number of vessels catheterized.
Results:
A total of 20 consecutive, unilateral middle meningeal artery embolizations were retrospectively analyzed. The radiation reduction protocol was associated with a 39.2% decrease in the total radiation dose and a 37.1% decrease in radiation dose per run. The protocol was associated with a 41.6% decrease in the total radiation exposure and a 39.5% decrease in exposure per run.
Conclusions
Radiation reduction protocols can be readily applied to neuroendovascular interventions without increasing overall fluoroscopy time and reduce radiation dose and exposure by 39.2% and 41.6% respectively. We strongly encourage all interventionalists to be cognizant of pulse rate and frame rate when performing routine interventions.
9.Optimizing suction force in mechanical thrombectomy: Priming the aspiration tubing with air versus saline
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Javier BRAVO ; Jeffrey A. STEINBERG ; J. Scott PANNELL ; Alexander A. KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):260-264
Objective:
We sought to investigate how priming the tube between air versus air mixed with saline ex vivo influenced suction force. We examined how priming the tube influenced peak suction force and time to achieve peak suction force between both modalities.
Methods:
Using a Dwyer Instruments (Dwyer Instruments Inc., Michigan City, IN, USA), INC Digitial Pressure Gauge, we were able to connect a .072 inch aspiration catheter to a rotating hemostatic valve and to aspiration tubing. We recorded suction force measured in negative inches of Mercury (inHg) over 10 iterations between having the aspiration tube primed with air alone versus air mixed with saline. A test was used to compare results between both modalities.
Results:
Priming the tube with air alone compared to air mixed with saline was found to have an increased average max suction force (-28.60 versus -28.20 in HG, p<0.01). We also identified a logarithmic curve of suction force across time in which time to maximal suction force was more prompt with air compared with air mixed with saline (13.8 seconds versus 21.60 seconds, p<0.01).
Conclusions
Priming the tube with air compared to air mixed with saline suggests that not only is increased maximal suction force achieved, but also the time required to achieve maximal suction force is less. This data suggests against priming the aspiration tubing with saline and suggests that the first pass aspiration primed with air may have the greatest suction force.
10.ALARA principles in practice: reduced frame and pulse rates for middle meningeal artery embolization
Arvin R. WALI ; Ryan W. SINDEWALD ; Michael G. BRANDEL ; Sarath PATHURI ; Brian R. HIRSHMAN ; Javier A. BRAVO ; Jeffrey A. STEINBERG ; Jeffrey S. PANNELL ; Alexander KHALESSI ; David R. SANTIAGO-DIEPPA
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(3):293-297
Objective:
As the prevalence of neuroendovascular interventions increases, it is critical to mitigate unnecessary radiation for patients, providers, and health care staff. Our group previously demonstrated reduced radiation dose and exposure during diagnostic angiography by reducing the default pulse and frame rates. We applied the same technique for basic neuroendovascular interventions.
Methods:
We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. We studied consecutive, unilateral middle meningeal artery embolizations treated with particles. Total radiation dose, radiation per angiographic run, total radiation exposure, and exposure per run were calculated. Multivariable log-linear regression was performed to account for patient body mass index (BMI), number of angiographic runs, and number of vessels catheterized.
Results:
A total of 20 consecutive, unilateral middle meningeal artery embolizations were retrospectively analyzed. The radiation reduction protocol was associated with a 39.2% decrease in the total radiation dose and a 37.1% decrease in radiation dose per run. The protocol was associated with a 41.6% decrease in the total radiation exposure and a 39.5% decrease in exposure per run.
Conclusions
Radiation reduction protocols can be readily applied to neuroendovascular interventions without increasing overall fluoroscopy time and reduce radiation dose and exposure by 39.2% and 41.6% respectively. We strongly encourage all interventionalists to be cognizant of pulse rate and frame rate when performing routine interventions.