1.Effects of ruthenium red on body temperature in rats with lipopolysaccharide-induced fever.
Journal of Southern Medical University 2008;28(8):1376-1377
OBJECTIVETo observe the effect of ruthenium red (RR) on the body temperature of rats with lipopolysaccharide (LPS)-induced fever and investigate the possible mechanism.
METHODSRat models of fever were established with lipopolysaccharide and the effects of RR at different doses were observed on the body temperature of the rats and the content of TRPV4 in the hypothalamus.
RESULTSCompared with those in LPS group, the rats with LPS-induced fever receiving RR treatment showed a dose-dependent lowering of the body temperature. The rats with RR treatment had lower body temperature than those with saline injection. The content of TRPV4 in the saline group was significantly higher than that in RR+LPS and RR group.
CONCLUSIONSRR inhibits LPS-induced fever in rats and regulates the hypothalamal expression of TRPV4 channels, which may participate in the maintenance of normal body temperature.
Animals ; Blotting, Western ; Body Temperature ; drug effects ; Dose-Response Relationship, Drug ; Fever ; chemically induced ; metabolism ; physiopathology ; Hypothalamus ; drug effects ; metabolism ; Lipopolysaccharides ; Male ; Rats ; Rats, Sprague-Dawley ; Ruthenium Red ; pharmacology ; TRPV Cation Channels ; biosynthesis
2.Factors modulating recovery rate after intermittent tetanic fatigue in atrophic soleus.
Hui LI ; Bo JIAO ; Zhi-Bin YU
Acta Physiologica Sinica 2007;59(3):369-374
Fatigue occurs when the interval of intermittent tetanic contraction of skeletal muscle is shortened to a certain degree and the contractile tension declines. After fatigue, prolongation of the contraction interval can make the contractile tension recover. In atrophic soleus, the recovery rate is slower. It has been shown that a decrease in the contractile tension is caused by the inhibition of the myofibrils and sarcoplasmic reticulum Ca(2+) release channels during fatigue. So the mechanism of the recovery of contractile tension is the recovery of the inhibited myofibrils and sarcoplasmic reticulum Ca(2+) release channels. But how the inhibition affects the recovery course is still unclear. To specify the factors modulating the recovery rate after intermittent tetanic fatigue in soleus, and to seek the reasons for the decrease in recovery rate in atrophic soleus, we observed the recovery time course of different types of fatigue in isolated soleus muscle strips. The 10% or 50% decrease in the maximal tetanic contractile tention (P(0)) was defined respectively as slight or moderate fatigue. After short-term (S10P, 10 s) and long-term (L10P, 300 s) slight fatigue, the tetanic contractile tension recovered to nearly 100% P(0) at the 20th minute. In both slight fatigue groups, perfusion with 10 mumol/L of ruthenium red (an inhibitor of Ca(2+) release channels in sarcoplasmic reticulum) slowed down the recovery rate. It was suggested that slight fatigue only induced inhibition of myofibrils. After short-term (S50P, 60 s) or long-term (L50P, 300 s) moderate fatigue, the tetanic contractile tension at the 20th minute recovered to about 95% P(0) in S50P group and 90% P(0) in L50P group, respectively. The recovery rate in L50P group was significantly lower than that in S50P group. So the recovery rate after moderate fatigue was related to the tetanic contraction duration. In both moderate fatigue groups, perfusion with 5 mmol/L of caffeine (an opener of Ca(2+) release channels in sarcoplasmic reticulum) resulted in nearly 100% recovery at the 5th minute. It was suggested that moderate fatigue induced inhibition of myofibrils and sarcoplasmic reticulum Ca(2+) release channels. In 1-week tail-suspended rats, soleus muscles showed a 40% of atrophy. After slight fatigue, the tetanic contractile tension in unloaded soleus recovered to 94% P(0) in S10P group and 95% P(0) in L10P. After moderate fatigue, the tetanic contractile tension in unloaded soleus recovered to 92% P(0) in S50P and 84% P(0) in L50P at the 20th minute. There were significant decreases in all of the fatigue groups as compared with the control groups. These results suggest that both slight and moderate fatigue inhibit the myofibrils and sarcoplasmic reticulum Ca(2+) release channels in 1-week unloaded soleus, so the recovery rate after tetanic fatigue is slower than that in the control group.
Animals
;
Caffeine
;
pharmacology
;
Calcium
;
metabolism
;
Hindlimb Suspension
;
Male
;
Muscle Fatigue
;
physiology
;
Muscle, Skeletal
;
pathology
;
physiopathology
;
Muscular Atrophy
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
;
Ruthenium Red
;
pharmacology
;
Ryanodine Receptor Calcium Release Channel
;
physiology
3.Effects of low-dose capsaicin on L-type calcium current in guinea pig ventricular myocytes.
Yan-Ping CHENG ; Jing-Xiang YIN ; Li-Ping CHENG ; Rui-Rong HE
Acta Physiologica Sinica 2004;56(2):243-247
The purpose of this study was to examine the effects of low-dose capsaicin (CAP) on L-type calcium current (I(Ca-L) ) in guinea pig ventricular myocytes and the underlying mechanism. I(Ca-L) was examined in isolated single guinea pig ventricular myocytes by using whole-cell patch clamp technique. CAP (1-25 nmol/L) increased the voltage-dependently activated peak amplitude of I(Ca-L) and downshifted the current-voltage (I-V) curve. CAP (1, 10, 25 nmol/L) increased the peak amplitude of I(Ca-L) from -9.67+/-0.7 pA/pF to -10.21+/-0.8 pA/pF (P>0.05), to -11.37+/-0.8 pA/pF and to -12.84+/-0.9 pA/pF (P<0.05), respectively. CAP 25 nmol/L shifted the steady-state activation curve of I(Ca-L) to the left and changed half activation potential (V(0.5)) from (-20.76+/-2.0) mV to (-26.71+/-3.0) mV (P<0.05), indicating that low-dose CAP may modify the voltage-dependent activation of calcium channel. Low-dose of CAP did not affect the steady-state inactivation curve of I(Ca-L) or half-recovery time of Ca(2+) channel from inactivation. Ruthenium red (RR, 10 micromol/L), a vanilloid receptor (VR1) blocker, antagonized the effects of low-dose CAP. These results suggest that low-dose CAP increases I(Ca-L) mainly by shifting its steady-state activation curve to the left. Such effects may be mediated by VR1.
Animals
;
Calcium Channels, L-Type
;
drug effects
;
Capsaicin
;
pharmacology
;
Dose-Response Relationship, Drug
;
Guinea Pigs
;
Heart Ventricles
;
Myocytes, Cardiac
;
metabolism
;
Patch-Clamp Techniques
;
Receptors, Drug
;
antagonists & inhibitors
;
Ruthenium Red
;
pharmacology
4.Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability.
Jeong Han LEE ; Channy PARK ; Se Jin KIM ; Hyung Jin KIM ; Gi Su OH ; Aihua SHEN ; Hong Seob SO ; Raekil PARK
Experimental & Molecular Medicine 2013;45(3):e12-
Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins.
Animals
;
Cell Death/drug effects
;
Cell Polarity/drug effects
;
Cell Survival/drug effects
;
Dose-Response Relationship, Drug
;
Gadolinium/metabolism
;
Gentamicins/*metabolism/pharmacology
;
Hair Cells, Auditory/drug effects/*metabolism
;
Hair Cells, Auditory, Inner/drug effects/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Ruthenium Red/metabolism
;
TRPV Cation Channels/*metabolism
;
Time Factors
;
Xanthenes/metabolism
;
Zebrafish
5.Electrophysiological effects of capsaicin on spontaneous activity of rabbit atrioventricular node cells.
Qian LI ; Yu-Ming WU ; Rui-Rong HE
Acta Physiologica Sinica 2004;56(2):248-252
To study the electrophysiological effects of capsaicin on spontaneous activity of rabbit atrioventricular (AV) node cells, parameters of action potential in AV node were recorded using intracellular microelectrode technique. Capsaicin (1-30 micromol/L) not only decreased the amplitude of action potential, maximal rate of depolarization (V(max)), velocity of diastolic (phase 4) depolarization, and rate of pacemaker firing, but also prolonged the duration of 90% repolarization of action potential (APD(90)) in a concentration-dependent manner. Both application of L-type Ca(2+) channel agonist Bay K8644 (0.5 micromol/L) and elevation of calcium concentration (5 mmol/L) in superfusate antagonized the effects of capsaicin on pacemaker cells. Pretreatment with ruthenium red (10 micromol/L), a capsaicin receptor blocker, did not affect the effects of capsaicin on AV node cells. Capsaicin exerted an inhibitory action on spontaneous activity of AV node cells in rabbits. These effects were likely due to reduction in calcium influx, but were not mediated by VR1.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Action Potentials
;
drug effects
;
Animals
;
Atrioventricular Node
;
cytology
;
physiology
;
Calcium
;
metabolism
;
Calcium Channel Agonists
;
pharmacology
;
Calcium Channels, L-Type
;
drug effects
;
Capsaicin
;
pharmacology
;
Male
;
Microelectrodes
;
Rabbits
;
Receptors, Drug
;
antagonists & inhibitors
;
Ruthenium Red
;
pharmacology