1.Regulation of N6-methyladenosine on non-coding RNAs in pathological cardiac remodeling
Gonghua YIN ; Ruoyao XU ; Lijuan ZHANG ; Yifan ZHANG ; Jie QI ; Jun ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(20):3252-3258
BACKGROUND:N6-methyladenosine(m6A)is a hot research topic in the mechanism of pathological cardiac remodeling and plays an important role in the development of cardiovascular diseases. OBJECTIVE:To summarize the possible mechanism by which m6A modification in non-coding RNAs regulates the main processes of pathological cardiac remodeling,such as pathological cardiac hypertrophy,cardiomyocyte death,myocardial fibrosis and vascular remodeling. METHODS:"m6A,non-coding RNA,pathological cardiac hypertrophy,cardiomyocyte apoptosis,cardiomyocyte pyroptosis,cardiomyocyte ferroptosis,myocardial fibrosis,vascular remodeling"were used as search terms in Chinese and English.Relevant literature from CNKI,PubMed and Web of Science databases published from January 1974 to April 2023 was retrieved,and finally 86 eligible articles were reviewed. RESULTS AND CONCLUSION:m6A modification is a highly dynamic and reversible modification.Pathological cardiac remodeling mainly involves pathological cardiac hypertrophy,cardiomyocyte apoptosis,cardiomyocyte pyroptosis,cardiomyocyte ferroptosis,myocardial fibrosis and vascular remodeling.m6A-related enzymes can regulate pathological cardiac remodeling processes through various non-coding RNAs and different signaling pathways,which can be used as a new potential intervention for cardiovascular diseases.In pathological cardiac remodeling,research on the regulatory relationship between m6A modification and non-coding RNAs is still in its infancy.With the development of epigenetics,m6A modification in non-coding RNAs is expected to have a new development in the regulation of pathological cardiac remodeling.
2.Imbalance of programmed cell death patterns mediated by dendritic cell subsets in systemic lupus erythematosus and lupus nephritis
Ruoyao XU ; Ying ZHANG ; Qingtai CAO ; Sheng LIAO ; Youzhou TANG ; Quan ZHUANG
Journal of Central South University(Medical Sciences) 2024;49(3):331-348
Objective:Abnormal programmed cell death in immune cells is associated with autoimmune diseases,but the patterns of programmed cell death in systemic lupus erythematosus(SLE)and especially lupus nephritis(LN)remain unclear.This study aims to explore the association between SLE,LN,and immune cell death patterns. Methods:Bulk RNA sequencing(bulk RNA-seq)and single-cell RNA sequencing(scRNA-seq)data were downloaded from the Gene Expression Omnibus(GEO)database.Bioinformatic analysis was conducted to explore the expression levels of genes related to 3 cell death patterns in peripheral blood mononuclear cells of SLE patients.Key cell subsets involved in the imbalance of cell death patterns were identified through scRNA-seq.Immunofluorescence was used to detect the expression levels of receptor interacting serine/threonine kinase 3(RIPK3),mixed-lineage kinase domain-like protein(MLKL),phosphorylated MLKL(pMLKL),caspase 1(CASP1),CD1c molecule(CD1C),C-type lectin domain containing 9A(CLEC9A),and X-C motif chemokine receptor 1(XCR1)in dendritic cells(DC).scRNA-seq was performed on kidney tissues collected from LN patients and healthy controls(HC)at the Third Xiangya Hospital of Central South University,followed by bioinformatic analysis to identify key cell subsets involved in the imbalance of cell death patterns.Pseudotime analysis and ligand-receptor analysis were used to explore the differentiation direction and cell communication of different DC subsets.Transient transfection was used to transfect RAW264.7 cells with empty plasmid,empty plasmid+dsDNA(HSV-DNA),empty plasmid+200 μmol/L tert-butyl hydroperoxide(TBHP),stimulator of interferon genes(STING)shRNA plasmid,STING shRNA plasmid+dsDNA(HSV-DNA),and STING shRNA plasmid+200 μmol/L TBHP.Annexin V-mCherry and SYTOX Green staining were used to detect cell death in each group.Western blotting was used to detect the activation of CASP1,gasdermin D(GSDMD),RIPK3,and MLKL in each group. Results:Bioinformatic analysis showed an imbalance in 3 cell death patterns in SLE and LN patients:Pro-inflammatory pyroptosis and necroptosis were activated,while anti-inflammatory apoptosis was inhibited.The key cell subsets involved were DC subsets,particularly focusing on CLEC9A+cDC1.Immunofluorescence results showed that the expression levels of RIPK3,MLKL,and CASP1 in DCs were higher in the SLE group compared to the HC group.pMLKL and CASP1 expression levels in renal cDC1 marked by CLEC9A and XCR1 were higher in the LN group than in the HC group.Pseudotime analysis and ligand-receptor analysis suggested that the CLEC9A+cDC1 subset in LN kidney tissues originated from peripheral circulation.Annexin V-mCherry and SYTOX Green staining results showed that the number of dead cells decreased in the STING shRNA transfection group compared to the empty plasmid group in RAW264.7 cells.Western blotting results showed that the activation of CASP1,GSDMD,RIPK3,and MLKL was decreased in the STING shRNA transfection group compared to the empty plasmid group. Conclusion:This study provides novel insights into the role of CLEC9A+cDC1 in the imbalance of cell death patterns in SLE and LN.
3.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
4.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
5.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
6.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.