1.Advances of microRNA activity in innate immunity
Ruocong YANG ; Feipeng DUAN ; Jiahong CHAO ; Pengpeng TIAN ; Zhiyong YAN ; Shaojing LI
Journal of China Pharmaceutical University 2017;48(4):396-406
MicroRNA (miRNA),sharing the character of regulating the transcriptional level and expression level of mRNAs,is one kind of small non-coded RNAs.At present,innate immune has become one of the hot topics for researchers,and miRNAs as a sort of bioactive substance greatly take part in the whole regulation progress.In detailed,miRNAs can influence the immune state of immune cells during innate immune period and further regulate inflammatory conditions in whole body.By systematically summarizing miRNA function during innate immunity,this present review may provide a reference for peer researchers.
2.Houshihei San Repairs Skeletal Muscle Injury After Ischaemic Stroke by Regulating Ferroptosis Pathway
Hu QI ; Dan TIAN ; Xiongwei ZHANG ; Zeyang ZHANG ; Yuanlin GAO ; Yanning JIANG ; Xinran MIN ; Jiamin ZOU ; Jiuseng ZENG ; Nan ZENG ; Ruocong YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):1-11
ObjectiveTo investigate the pharmacodynamic effects of Houshihei San (HSHS) recorded with the effects of treating wind and limb heaviness on muscle tissue injury after middle cerebral artery occlusion (MCAO) in rats through the ferroptosis pathway. MethodsThirty SD male rats were selected and randomly grouped as follows: sham, MCAO, deferoxamine mesylate, high-dose HSHS (HSHS-H, 0.54 g·kg-1), and low-dose HSHS (HSHS-L, 0.27 g·kg-1), with 6 rats in each group. A laser scattering system was used to evaluate the stability of the MCAO model, and rats were administrated with corresponding agents by gavage for 7 days. During the administration period, behavioral, imaging and other methods were used to systematically evaluate the skeletal muscle tissue injury after MCAO and the therapeutic effect in each administration group. Hematoxylin-eosin staining was employed to evaluate the cross-section of muscle cells. Subsequently, immunohistochemistry was used to detect tumor suppressor p53 and glutathione peroxidase 4 (GPX4) in the soleus tissue. Western blot was employed to determine the protein levels of p53, GPX4, myogenic differentiation 1 (MyoD1), nuclear factor E2-related factor 2 (Nrf2), Myostatin, solute carrier family 7 member 11 (SLC7A11), muscle ring-finger protein-1 (MuRF1), and muscle atrophy F-box protein (MAFbx) to verify the therapeutic effect in each group. ResultsCompared with the MCAO group, HSHS enhanced the locomotor ability and promoted muscle regeneration, which suggested that the pharmacological effects of HSHS were related to the inhibition of muscle tissue ferroptosis to reduce the expression of muscle atrophy factors. Behavioral and imaging results suggested that compared with the MCAO group, HSHS ameliorated neurological impairments in rats on day 7 (P<0.01), enhanced 5-min locomotor distance and postural control (P<0.01), strengthened grasping power and promoted muscle growth (P<0.01), stabilized skeletal muscle length and weight (P<0.01), and increased the cross-section of muscle cells (P<0.01). Compared with the MCAO group, HSHS promoted the increases in glutathione and superoxide dismutase content and inhibited the increase in malondialdehyde content (P<0.05,P<0.01). Ferroptosis pathway-related assays suggested that HSHS reduced the p53-positive cells and increased the GPX4-positive cells (P<0.01). HSHS ameliorated muscle function decline after stroke by promoting the expression of GPX4, Nrf2, SLC7A11, and MyoD1 and inhibiting the expression of p53, Myostatin, MurRF1, and MAFbx to reduce ferroptosis in the muscle (P<0.01). ConclusionHSHS, prepared with reference to the method in the Synopsis of Golden Chamber, can simultaneously reduce the myolysis and increase the protein synthesis in the skeletal muscle tissue after ischemic stroke by regulating the ferroptosis pathway.
3.Improvement effects and mechanism of water extract from Chrysanthemum morifolium on muscle atrophy in rats after ischemic stroke
Ruocong YANG ; Hu QI ; Yuanlin GAO ; Zeyang ZHANG ; Xiaorui CHEN ; Rong LIU ; Nan ZENG
China Pharmacy 2025;36(5):535-539
OBJECTIVE To study the improvement effects and potential mechanisms of water extract from Chrysanthemum morifolium on skeletal muscle atrophy in rats after ischemic stroke. METHODS Sprague-Dawley rats were randomly divided into sham operation group, model group, ATP group (10 mg/kg), C. morifolium water extract high-dose and low-dose groups (1.08, 0.54 g/kg). Except for sham operation group, ischemic stroke models were induced in rats from the other groups using middle cerebral artery occlusion. Starting from the first day after surgery, rats in each group were given corresponding drug/normal saline intragastrically, once a day, for consecutive 7 days. On the 7th day post-surgery, the rats’ body weights were measured, and their motor functions were evaluated, including Longa scores, exercise distance, grip strength; the electrophysiological signals of the skeletal muscles in rats were measured; the pathological morphology of the soleus muscle in rats was observed; the levels of tumor necrosis factor-α (TNF-α) in serum and soleus muscle were measured; the expressions of proteins related to TNF-α/c-Jun N- terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway in the soleus muscle were determined. RESULTS Compared with sham operation group, the body weight, grip strength and exercise distance of rats were decreased/ shortened significantly (P<0.01); additionally, there was a notable reduction in the interpeak value of skeletal muscle electrophysiology (P<0.05 or P<0.01). Longa score, as well as the levels of TNF-α in serum and soleus muscle, and the expression levels of TNF-α, phosphorylated JNK, phosphorylated MAPK, muscle ring-finger protein-1, and muscle atrophy Fbox- 1 protein in the soleus muscle, were all significantly elevated (P<0.01). The skeletal muscle cells of the soleus muscle in the model group showed significant atrophy, with a markedly decreased cross-sectional area (P<0.01). Compared with the model group, the levels of the aforementioned indicators were significantly reversed in C. morifolium water extract groups (P<0.05 or P< 0.01), and the skeletal muscle cells of the soleus muscle were markedly enlarged. CONCLUSIONS C. morifolium water extract can improve skeletal muscle atrophy in rats after ischemic stroke, the mechanism of which may be associated with suppressing the activation of the TNF- α/JNK/MAPK E-mail:19932015@cdutcm.edu.cn signaling pathway.