1.Suppression of nicotinic ACh receptors-mediated currents by activation of Eph/Ephrin-B1 signaling involves Src tyrosine kinase and mitogen-activated protein kinase in ciliary ganglion neurons.
Yuan-Peng XIA ; Bo HU ; Yu-Nan ZHOU ; Ling MAO ; Ruo-Lian DAI ; Li-Ping DONG
Acta Physiologica Sinica 2008;60(4):462-468
Recent studies showed that Eph/Ephrin tyrosine kinase family plays an important role in the development and functional maintenance of the nervous system, but its function in the sympathetic nervous system is still obscure. In the present study, we examined the effect of Eph/Ephrin-B1 signaling on the whole-cell currents mediated by either alpha7 or alpha3-nicotinic acetylcholine receptors (nAChRs) in acutly dissociated ciliary ganglion (CG) neurons. Firstly, we detected the effect of Ephrin-B1 on nAChRs currents. The neurons were randomly divided into control group, Ephrin-B1Fc-treated group that was stimulated by recombinant Ephrin-B1Fc, IgG-treated group, and Ephrin-B1-treated group. Secondly, we studied the regulatory mechanism of Ephrin-B1Fc on nAChRs currents. The neurons were randomly divided into control group, Ephrin-B1Fc-treated group, PP2 (inhibitor of Src tyrosine kinase) or PD98095 (antagonist of mitogen-activated protein kinase)-treated group, Ephrin-B1Fc + PP2 or PD98095-treated group. The results showed that there was no significant difference between the currents in control group, IgG-treated group and Ephrin-B1-treated group, but Ephrin-B1Fc significantly suppressed both alpha3-nAChRs and alpha7-nAChRs-mediated currents (P=0.002, P=0.003). Pretreatment with PP2 or PD98095 could partially rescue the Ephrin-B1Fc-induced suppression of currents mediated by alpha3-nAChRs or alpha7-nAChRs respectively. These results suggest that the Eph/Ephrin-B1 signaling may inhibit alpha3-nAChRs and alpha7-nAChRs-mediated currents on CG neurons, involving Src tyrosine kinase and mitogen-activated protein kinase signaling in the regulation of sympathetic nervous system.
Ephrin-B1
;
metabolism
;
Ganglia, Parasympathetic
;
enzymology
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Neurons
;
enzymology
;
Receptors, Nicotinic
;
metabolism
;
Signal Transduction
;
alpha7 Nicotinic Acetylcholine Receptor
;
metabolism
;
src-Family Kinases
;
metabolism
2.Expression and significance of jumonji domain-containing protein 2B and hypoxia inducible factor-1α in non-Hodgkin lymphoma tissues in children.
Yu-Qiao DIAO ; Jian WANG ; Xiu-Li ZHU ; Jian CHEN ; Yu ZHENG ; Lian JIANG ; Yue-Ping LIU ; Ruo-Heng DAI ; Yi-Wei YAN
Chinese Journal of Contemporary Pediatrics 2023;25(11):1150-1155
OBJECTIVES:
To investigate the expression and significance of jumonji domain-containing protein 2B (JMJD2B) and hypoxia-inducible factor-1α (HIF-1α) in non-Hodgkin's lymphoma (NHL) tissues in children.
METHODS:
Immunohistochemistry was used to detect the expression of JMJD2B and HIF-1α in lymph node tissue specimens from 46 children with NHL (observation group) and 24 children with reactive hyperplasia (control group). The relationship between JMJD2B and HIF-1α expression with clinicopathological characteristics and prognosis in children with NHL, as well as the correlation between JMJD2B and HIF-1α expression in NHL tissues, were analyzed.
RESULTS:
The positive expression rates of JMJD2B (87% vs 21%) and HIF-1α (83% vs 42%) in the observation group were higher than those in the control group (P<0.05). The expression of JMJD2B and HIF-1α was correlated with serum lactate dehydrogenase levels and the risk of international prognostic index in children with NHL (P<0.05). The expression of JMJD2B was positively correlated with the HIF-1α expression in children with NHL (rs=0.333, P=0.024).
CONCLUSIONS
JMJD2B and HIF-1α are upregulated in children with NHL, and they may play a synergistic role in the development of pediatric NHL. JMJD2B can serve as a novel indicator for auxiliary diagnosis, evaluation of the severity, treatment guidance, and prognosis assessment in pediatric NHL.
Humans
;
Child
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Prognosis
;
Hypoxia
;
Lymphoma, Non-Hodgkin