1.Designment and application of a novel device for microcirculation viviperception
Hui LI ; Juan DONG ; Limin CHENG ; Xiaolong ZENG ; Runlin FAN ; Zigang GUI ; Lei XU ; Xiaohua LU
Chinese Critical Care Medicine 2021;33(1):109-110
The key technology of the device for the viviperception of the animal mesenteric microcirculation is to simulate the celiac environment in the device. The technical requirements of the device for microcirculation viviperception are that the observation box should be able to "keep warm, preserve moisture, continually perfuse, and fix the sample"; and the lighting should be "intense", "convergence", and "cool". After actual application, it was found that the newly designed and developed the device by research personnel of Wannan Medical College for the viviperception of the animal mesenteric microcirculation can meet the technical requirements, which is able to "keep warm, preserve moisture, continually perfuse, and fix the sample", and using LED lamp as the microscope light source is "intense", "convergence", and "cool". This device is ingenious and reasonable in design, stable in technology, convenient in operation, and competent in microcirculation viviperception. It solves the technical problem to simulate the celiac environment for mesenteric microcirculation viviperception. The device provides convenience to observe and study the microcirculation, which is worth to be applicated widely.
2.A cell membrane like biomimetic drug-eluting coronary stent
Dezeng FAN ; Xinhao YAN ; Huijuan BIAN ; Chenshui CAI ; Fuyu SUN ; Jian JI ; Jianping XU ; Qiao JIN ; Jiacong SHEN ; Hong QIU ; Runlin GAO
Chinese Journal of Tissue Engineering Research 2009;13(21):4109-4112
BACKGROUND: The restenosis occurs up to 20%-30% following metal coronary stent implantation. Under the support of the 863 program, the feasibility to treat coronary artery stenosis using a novel drug-eluting stent (DES) has been investigated to reduce restenosis. OBJECTIVE: A drug-eluting stent (rapamycin as drug mode) was implanted into porcine models of coronary stenosis. The safety and efficacy of the drug-eluting stent were observed and compared with bare-metal stent. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed in the Fu Wai Hospital for Cardiovascular Disease between November 2003 and April 2004. MATERIALS: A novel bioinspired phospholipid copolymer was synthesized by free radical polymerization of stearyl methacrylate, β-hydroxypropyl methacrylateand 3-(trimethoxysilyl) propylmethacrylate. METHODS: Twenty-one pigs were randomly divided into 3 groups: bare-mental stent, drug-eluting stent, and polymer-coated stent. The treated stents pre-loaded onto a delivery system through the use of crimping instrument were implanted into pig's coronary artery, with 2 stents per pig. MAIN OUTCOME MEASURES: Determination of luminal diameter, luminal area, mean intimal thickness on and between the stents, neointimal area, percentage of luminal area restenosis, and damage index using an image analysis instrument. RESULTS: At 28 days after implantation, there was significant difference in mean intimal thickness on and between the stents, as well as neointimal area, between the DES and bare-metal stent groups (P < 0.05). The neointimal area was reduced by 44.87% in the DES group compared with the bare-metal stent group. No significant difference in percentage of luminal area restenosis was found between the DES and bare-metal stent groups, but P value equaled to 0.053, which was close to 0.05. In addition, no restenosis was found in the DES group. CONCLUSION: Rapamycin DES can markedly resist intravascular intimal hyperplasia and restenosis following stenting.
3.Pilot study of a cell membrane like biomimetic drug-eluting coronary stent.
Dezeng FAN ; Zhiyuan JIA ; Xinhao YAN ; Xiaolei LIU ; Wei DONG ; Fuyu SUN ; Jian JI ; Jianping XU ; Kefeng REN ; Weidong CHEN ; Jiacong SHEN ; Hong QIU ; Runlin GAO
Journal of Biomedical Engineering 2007;24(3):599-602
A novel bioinspired phospholipid copolymer has been synthesized by the radical polymerization of poly2-Methacryloyloxyethylphosphorylcholine (MPC), stearyl methacrylate (SMA), hydroxypropyl methacrylate (HPMA) and trimethoxysilylpropyl methacrylate (TSMA). Contact angle results indicated that the coating surface rearranged to get a more hydrophilic surface at the polymer/water interface. The membrane mimic phosphorylcholine coating surface could resist the platelet adhesion and prolong plasma recalcification time significantly. Rapamycin was used as model drugs to prepare drug-eluting coating. The animal experiments showed that this novel drug-eluting stent could effectively prevent the phenomena of restenosis.
Angioplasty, Balloon, Coronary
;
instrumentation
;
Animals
;
Coated Materials, Biocompatible
;
Coronary Restenosis
;
prevention & control
;
Drug-Eluting Stents
;
Female
;
Humans
;
Male
;
Materials Testing
;
Methacrylates
;
chemistry
;
Phosphorylcholine
;
analogs & derivatives
;
chemistry
;
Pilot Projects
;
Polymers
;
chemistry
;
Prosthesis Design
;
Random Allocation
;
Sirolimus
;
chemistry
;
Swine
;
Swine, Miniature