1.Effect of moderate-to-severe hepatic steatosis on neutralising antibody response among BNT162b2 and CoronaVac recipients
Ka Shing CHEUNG ; Lok Ka LAM ; Rex Wan Hin HUI ; Xianhua MAO ; Ruiqi R ZHANG ; Kwok Hung CHAN ; Ivan FN HUNG ; Wai Kay SETO ; Man-Fung YUEN
Clinical and Molecular Hepatology 2022;28(3):553-564
Background/Aims:
Studies of hepatic steatosis (HS) effect on COVID-19 vaccine immunogenicity are lacking. We aimed to compare immunogenicity of BNT162b2 and CoronaVac among moderate/severe HS and control subjects.
Methods:
Two hundred ninety-five subjects who received BNT162b2 or CoronaVac vaccines from five vaccination centers were categorized into moderate/severe HS (controlled attenuation parameter ≥268 dB/m on transient elastography) (n=74) or control (n=221) groups. Primary outcomes were seroconversion rates of neutralising antibody by live virus Microneutralization (vMN) assay (titer ≥10) at day21 (BNT162b2) or day28 (CoronaVac) and day56 (both). Secondary outcome was highest-tier titer response (top 25% of vMN titer; cutoff: 160 [BNT162b2] and 20 [CoronaVac]) at day 56.
Results:
For BNT162b2 (n=228, 77.3%), there was no statistical differences in seroconversion rates (day21: 71.7% vs. 76.6%; day56: 100% vs. 100%) or vMN geometric mean titer (GMT) (day21: 13.2 vs. 13.3; day56: 91.9 vs. 101.4) among moderate/severe HS and control groups respectively. However, lower proportion of moderate/severe HS patients had highest-tier response (day56: 5.0% vs. 15.5%; P=0.037). For CoronaVac (n=67, 22.7%), there was no statistical differences in seroconversion rates (day21: 7.1% vs. 15.1%; day56: 64.3% vs. 83.0%) or vMN GMT (5.3 vs. 5.8,) at day28. However, moderate/severe HS patients had lower vMN GMT (9.1 vs. 14.8, P=0.021) at day 56 with lower proportion having highest-tier response (21.4% vs. 52.8%, P=0.036).
Conclusions
While there was no difference in seroconversion rate between moderate/severe HS and control groups after two doses of vaccine, a lower proportion of moderate/severe HS patients achieved highest-tier response for either BNT162b2 or CoronaVac.
2.The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model.
Ruiqi NIU ; Cheng ZHANG ; Changzhe WU ; Hua LIN ; Guanghao ZHANG ; Xiaolin HUO
Journal of Biomedical Engineering 2023;40(3):401-408
In transcranial magnetic stimulation (TMS), the conductivity of brain tissue is obtained by using diffusion tensor imaging (DTI) data processing. However, the specific impact of different processing methods on the induced electric field in the tissue has not been thoroughly studied. In this paper, we first used magnetic resonance image (MRI) data to create a three-dimensional head model, and then estimated the conductivity of gray matter (GM) and white matter (WM) using four conductivity models, namely scalar (SC), direct mapping (DM), volume normalization (VN) and average conductivity (MC), respectively. Isotropic empirical conductivity values were used for the conductivity of other tissues such as the scalp, skull, and cerebrospinal fluid (CSF), and then the TMS simulations were performed when the coil was parallel and perpendicular to the gyrus of the target. When the coil was perpendicular to the gyrus where the target was located, it was easy to get the maximum electric field in the head model. The maximum electric field in the DM model was 45.66% higher than that in the SC model. The results showed that the conductivity component along the electric field direction of which conductivity model was smaller in TMS, the induced electric field in the corresponding domain corresponding to the conductivity model was larger. This study has guiding significance for TMS precise stimulation.
Transcranial Magnetic Stimulation
;
Diffusion Tensor Imaging
;
Electric Conductivity
;
Electricity
;
Scalp