1.Formulation Characteristics and Efficacy Classification of Chinese Patent Medicines for Cardiovascular and Cerebrovascular Diseases Based on Diagram of Tangye Jingfa Tu
Yuguang WANG ; Runtao ZHUANG ; Yanqing LIU ; Shen LI ; Xiaolan LIN ; Rui JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):224-233
ObjectiveChinese patent medicines for cardiovascular and cerebrovascular diseases are diverse and complex in their efficacy. The traditional classification method based on efficacy categories has certain limitations and cannot meet the clinical needs for individualized drug selection and variety comparison. This article, based on the formulation compatibility analysis technology of "Tangye Jingfa Tu", clarifies the composition and efficacy characteristics of common Chinese patent medicines used for cardiovascular and cerebrovascular diseases, providing support for the precise selection of these medicines. MethodsFifty-six representative Chinese patent medicines, covering all the efficacy subcategories of "stasis-resolving agents" in the National Basic Medical Insurance, Work Injury Insurance, and Maternity Insurance Drug Catalogue (2023) (more than 50% of the total), were selected for the study. Within the knowledge system of "Tangye Jingfa Tu", the compatibility structure of herbal flavors and the proportion structure of herbal quantities for each Chinese patent medicine were determined. The correlation between these structures and the efficacy categories was analyzed to identify the similarities and differences among the selected Chinese patent medicines. Additionally, the efficacy was reclassified and compared according to the theoretical framework of tonifying and purging methods of five Zang organs in the "Tangye Jingfa Tu". ResultsThe representative Chinese patent medicines included in the analysis were Shexiang Baoxin pills, Danshen tablets, Qili Qiangxin capsules, Breviscapine tablets, etc., covering all the efficacy subcategories of "stasis-resolving agents". Among the 56 representative Chinese patent medicines, salty flavor was the most common (48), followed by pungent (33), and sweet (26). According to the dominant herbal flavor, salty flavor was the most common (37), followed by pungent (9), and sour (5). According to the dominant herbal quantity, salty flavor was the most common (27), followed by sour (7), and pungent (5). Furthermore, Chinese patent medicines with different efficacy subtypes showed different flavor characteristics. For example, most Qi-invigorating and blood-activating agents contained sweet drugs for tonifying the spleen (9/10), most Qi-moving and blood-activating agents contained pungent drugs for tonifying the liver (7/8), and all kidney-invigorating and blood-activating agents contained bitter drugs for tonifying the kidneys (6/6). However, the efficacy classification of individual medicines did not always align with the compatibility characteristics of their formulas, as seen with Dengyin Naotong capsules. ConclusionThe formulations of Chinese patent medicines for cardiovascular and cerebrovascular diseases predominantly feature salty, sour, and pungent flavors, which largely conform to the therapeutic principles of "nourishing the heart with salt and soothing the heart with sour" and the liver-heart, heart-spleen mother-child treatment relationship shown in the "Tangye Jingfa Tu". Using the "Tangye Jingfa Tu" framework to conduct research on the structure and efficacy characteristics of Chinese patent medicines is objective and effective.
2.Formulation Characteristics and Efficacy Classification of Chinese Patent Medicines for Cardiovascular and Cerebrovascular Diseases Based on Diagram of Tangye Jingfa Tu
Yuguang WANG ; Runtao ZHUANG ; Yanqing LIU ; Shen LI ; Xiaolan LIN ; Rui JIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):224-233
ObjectiveChinese patent medicines for cardiovascular and cerebrovascular diseases are diverse and complex in their efficacy. The traditional classification method based on efficacy categories has certain limitations and cannot meet the clinical needs for individualized drug selection and variety comparison. This article, based on the formulation compatibility analysis technology of "Tangye Jingfa Tu", clarifies the composition and efficacy characteristics of common Chinese patent medicines used for cardiovascular and cerebrovascular diseases, providing support for the precise selection of these medicines. MethodsFifty-six representative Chinese patent medicines, covering all the efficacy subcategories of "stasis-resolving agents" in the National Basic Medical Insurance, Work Injury Insurance, and Maternity Insurance Drug Catalogue (2023) (more than 50% of the total), were selected for the study. Within the knowledge system of "Tangye Jingfa Tu", the compatibility structure of herbal flavors and the proportion structure of herbal quantities for each Chinese patent medicine were determined. The correlation between these structures and the efficacy categories was analyzed to identify the similarities and differences among the selected Chinese patent medicines. Additionally, the efficacy was reclassified and compared according to the theoretical framework of tonifying and purging methods of five Zang organs in the "Tangye Jingfa Tu". ResultsThe representative Chinese patent medicines included in the analysis were Shexiang Baoxin pills, Danshen tablets, Qili Qiangxin capsules, Breviscapine tablets, etc., covering all the efficacy subcategories of "stasis-resolving agents". Among the 56 representative Chinese patent medicines, salty flavor was the most common (48), followed by pungent (33), and sweet (26). According to the dominant herbal flavor, salty flavor was the most common (37), followed by pungent (9), and sour (5). According to the dominant herbal quantity, salty flavor was the most common (27), followed by sour (7), and pungent (5). Furthermore, Chinese patent medicines with different efficacy subtypes showed different flavor characteristics. For example, most Qi-invigorating and blood-activating agents contained sweet drugs for tonifying the spleen (9/10), most Qi-moving and blood-activating agents contained pungent drugs for tonifying the liver (7/8), and all kidney-invigorating and blood-activating agents contained bitter drugs for tonifying the kidneys (6/6). However, the efficacy classification of individual medicines did not always align with the compatibility characteristics of their formulas, as seen with Dengyin Naotong capsules. ConclusionThe formulations of Chinese patent medicines for cardiovascular and cerebrovascular diseases predominantly feature salty, sour, and pungent flavors, which largely conform to the therapeutic principles of "nourishing the heart with salt and soothing the heart with sour" and the liver-heart, heart-spleen mother-child treatment relationship shown in the "Tangye Jingfa Tu". Using the "Tangye Jingfa Tu" framework to conduct research on the structure and efficacy characteristics of Chinese patent medicines is objective and effective.
3.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
4.Research progress of the interaction between RAAS and clock genes in cardiovascular diseases.
Rui-Ling MA ; Yi-Yuan WANG ; Yu-Shun KOU ; Lu-Fan SHEN ; Hong WANG ; Ling-Na ZHANG ; Jiao TIAN ; Lin YI
Acta Physiologica Sinica 2025;77(4):669-677
The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.
Humans
;
Renin-Angiotensin System/genetics*
;
Cardiovascular Diseases/genetics*
;
CLOCK Proteins/physiology*
;
Animals
5.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
6.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
7.Diagnostic and intervention value of implantable cardiac monitor in patients over 60 years of age with unexplained syncope
Rui WANG ; Yanfei ZHANG ; Hongchao ZHANG ; Jia WANG ; Shuhui SHEN ; Jiabin TONG ; Junpeng LIU ; You LYU ; Jia CHONG ; Zhilei WANG ; Xin JIN ; Lin SUN ; Xu GAO ; Yan DAI ; Jing LIANG ; Haitao LI ; Tong ZOU ; Jiefu YANG
Chinese Journal of Cardiology 2024;52(7):784-790
Objective:To investigate the value of implantable cardiac monitor (ICM) in the diagnosis and treatment of patients over 60 years old with unexplained syncope.Methods:This was a multi-center, prospective cohort study. Between June 2018 and April 2021, patients over the age of 60 with unexplained syncope at Beijing Hospital, Fuwai Hospital, Beijing Anzhen Hospital and Puren Hospital were enrolled. Patients were divided into 2 groups based on their decision to receive ICM implantation (implantation group and conventional follow-up group). The endpoint was the recurrence of syncope and cardiogenic syncope as determined by positive cardiac arrhythmia events recorded at the ICM or diagnosed during routine follow-up. Kaplan‐Meier survival analysis was used to compare the differences of cumulative diagnostic rate between the 2 groups. A multivariate Cox regression analysis was performed to determine independent predictors of diagnosis of cardiogenic syncope in patients with unexplained syncope.Results:A total of 198 patients with unexplained syncope, aged (72.9±8.25) years, were followed for 558.0 (296.0,877.0) d, including 98 males (49.5%). There were 100 (50.5%) patients in the implantation group and 98 (49.5%) in the conventional follow-up group. Compared with conventional follow-up group, patients in the implantation group were older, more likely to have comorbidities, had a higher proportion of first degree atrioventricular block indicated by baseline electrocardiogram, and had a lower body mass index (all P<0.05). During the follow-up period, positive cardiac arrhythmia events were recorded in 58 (58.0%) patients in the ICM group. The diagnosis rate (42.0% (42/100) vs. 4.1% (4/98), P<0.001) and the intervention rate (37.0% (37/100) vs. 2.0% (2/98), P<0.001) of cardiogenic syncope in the implantation group were higher than those in the conventional follow-up group (all P<0.001). Kaplan-Meier survival analysis showed that the cumulative diagnostic rate of cardiogenic syncope was significantly higher in the implantation group than in the traditional follow-up group ( HR=11.66, 95% CI 6.49-20.98, log-rank P<0.001). Multivariate analysis indicated that ICM implantation, previous atrial fibrillation, diabetes mellitus or first degree atrioventricular block in baseline electrocardiogram were independent predictors for cardiogenic syncope (all P<0.05). Conclusions:ICM implantation improves the diagnosis and intervention rates in patients with unexplained syncope, and increases diagnostic efficiency in patients with unexplained syncope.
8.Upregulating KLF11 ameliorates intestinal inflammation in mice with 2, 4, 6-trinitrobenesulfonic acid-induced colitis by inhibiting the JAK2/STAT3 signaling pathway
Jin XI ; Min ZHANG ; Yongyu ZHANG ; Chen ZHANG ; Yulu ZHANG ; Rui WANG ; Lin SHEN ; Jing LI ; Xue SONG
Journal of Southern Medical University 2024;44(4):765-772
Objective To investigate the expression level of Kruppel-like transcription factor family member KLF11 in intestinal mucosal tissues of Crohn's disease (CD) and its regulatory effect on intestinal inflammation in CD-like colitis. Methods We examined KLF11 expression levels in diseased and normal colon mucosal tissues from 12 CD patients and 12 patients with colorectal cancer using immunofluorescence staining. KLF11 expression was also detected in the colon mucosal tissues of a mouse model of 2,4,6-trinitrobenesulfonic acid (TNBS)-induced colitis. A recombinant adenoviral vector was used to upregulate KLF11 expression in the mouse models and the changes in intestinal inflammation was observed. A Caco-2 cell model with stable KLF11 overexpression was constructed by lentiviral infection. The effect of KLF11 overexpression on expressions of JAK2/STAT3 signaling pathway proteins was investigated using immunoblotting in both the mouse and cell models. The mouse models were treated with coumermycin A1, a JAK2/STAT3 signaling pathway agonist, and the changes in intestinal inflammatory responses were observed. Results The expression level of KLF11 was significantly lowered in both the clinical specimens of diseased colon mucosal tissues and the colon tissues of mice with TNBS-induced colitis (P<0.05). Adenovirus-mediated upregulation of KLF11 significantly improved intestinal inflammation and reduced the expression levels of inflammatory factors in the intestinal mucosa of the colitis mouse models (P<0.05). Overexpression of KLF11 significantly inhibited the expression levels of p-JAK2 and p-STAT3 in intestinal mucosal tissues of the mouse models and in Caco-2 cells (P<0.05). Treatment with coumermycin A1 obviously inhibited the effect of KLF11 upregulation for improving colitis and significantly increased the expression levels of inflammatory factors in the intestinal mucosa of the mouse models (P<0.05). Conclusion KLF11 is downregulated in the intestinal mucosa in CD, and upregulation of KLF11 can improve intestinal inflammation and reduce the production of inflammatory factors probably by inhibiting the JAK2/STAT3 signaling pathway.
9.Study on the material basis and molecular mechanism of Rhei Radix et Rhizoma-Persicae Semen combination in activating blood circulation and dispelling blood stasis based on efficacy experiments, network pharmacology and HPLC
Lin ZHU ; Ying LIU ; Jie SHEN ; Bo-rui LI ; Ke-xin YUE ; Xia SHEN ; Fan PING
Acta Pharmaceutica Sinica 2024;59(7):2126-2134
In this study, the effective substance group and molecular mechanism of Rhei Radix et Rhizoma-Persicae Semen combination (RRR-PS) in activating blood circulation and dispelling blood stasis were investigated by integrating efficacy experiments, network pharmacology and HPLC. The rat model of blood stasis syndrome was established, and the blood rheology index and coagulation four comprehensive evaluation were carried out. The results showed that compared with the model group, the whole blood viscosity, erythrocyte sedimentation rate and erythrocyte aggregation index of the rats in the RRR-PS group were significantly callback (
10.Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms
Xin-Rong LU ; Yong-Liang TONG ; Wei-Li KONG ; Lin ZOU ; Dan-Feng SHEN ; Shao-Xian LÜ ; Rui-Jie LIU ; Shao-Xing ZHANG ; Yu-Xin ZHANG ; Lin-Lin HOU ; Gui-Qin SUN ; Li CHEN
Progress in Biochemistry and Biophysics 2024;51(5):985-999
Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.

Result Analysis
Print
Save
E-mail