1.Expression, purification, and characterization of fusion protein TAT-cytoglobin.
Rujing ZHANG ; Zhaofa LI ; Weijie SHI ; Rui'an XU
Chinese Journal of Biotechnology 2014;30(8):1247-1255
he aim of this study was to obtain a cell-penetrating cytoglobin (Cygb), which combines the transmembrane function of cell-penetrating peptides TAT with the anti-aging and anti-fibrotic role of cytoglobin. The Cygb gene was complexed with TAT gene by overlapping PCR, inserted into the vector pET22b to construct the recombinant expression plasmid (pET22b-TAT-Cygb) and then transformed into Escherichia coli BL21 (DE3). The fusion protein TAT-Cygb, whose expression was induced by lactose, was purified by CM Sepharose Fast Flow Protocol and verified by Western blotting. The final TAT-Cygb had a molecular weight of 23 kDa with 95% purity, as shown by SDS-PAGE. As demonstrated by bioactivity experiments, TAT-Cygb exhibited a high specific peroxidase activity up to (422.30 ± 0.36) U/mg. Both TAT-Cygb and Cygb pretreatment group could protect Hacat cells against oxidation of H2O2, but only TAT-Cygb treatment group could remedy cells injuried by H2O2 (RGR = 98%), which was significantly different from Cygb treatment group (RGR = 79%). We successfully obtained the bioactive and cell-penetrating fusion protein TAT-Cygb that has the potential application in anti-aging, anti-fibrotic and anti-cancer.
Blotting, Western
;
Cell Line
;
Cell-Penetrating Peptides
;
biosynthesis
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
metabolism
;
Gene Products, tat
;
Genetic Vectors
;
Globins
;
biosynthesis
;
Humans
;
Hydrogen Peroxide
;
Recombinant Fusion Proteins
;
biosynthesis
2.Trends in development of self-complementary adeno-associated virus vector.
Yinghui LÜ ; Qizhao WANG ; Weidong XIAO ; Yong DIAO ; Rui'an XU
Chinese Journal of Biotechnology 2009;25(5):658-664
Numerous studies and clinical trials have demonstrated the efficacy of recombinant adeno-associated virus gene delivery vectors. However, prior to expression, it is necessary to convert the single-stranded DNA genome into double-stranded DNA, which hinders the efficiency of these vectors. We can entirely circumvent this step through the use of self-complementary recombinant adeno-associated virus vector (scrAAV). ScrAAV packages an inverted repeat genome that can fold into double-stranded DNA without the requirement for DNA synthesis or base-pairing between multiple vector genomes. By using scrAAV, we could increase expression efficiency and reduce immune response caused by vectors themselves. Therefore, it is a promising vector for gene therapy. So far, it has been used in the treatment of hepatic diseases, central nervous system diseases, and eye diseases. It has also been used in the modifications of stem cells and as vectors for siRNA/miRNA and ribozymes. In this review, we focused on the preparation, expression and location of scrAAV both in vitro and in vivo. We mainly introduced the recent progress of scrAAV based therapy of Hemophilia B, in order to elucidate the potential and prospects of scrAAV in gene therapy.
Animals
;
Base Sequence
;
DNA
;
genetics
;
DNA, Complementary
;
genetics
;
DNA, Single-Stranded
;
genetics
;
Dependovirus
;
genetics
;
metabolism
;
Gene Transfer Techniques
;
Genetic Therapy
;
methods
;
trends
;
Genetic Vectors
;
genetics
;
Hemophilia B
;
therapy
;
Humans
;
Molecular Sequence Data
3.Role of cytoglobin in protecting hepatic stellate cells against oxidation induced damage.
Yinghui LÜ ; Qizhao WANG ; Zhaofa LI ; Yong DIAO ; Rui'an XU
Chinese Journal of Biotechnology 2011;27(8):1174-1182
The aim of this study was to reveal the protection role and the related mechanism of cytoglobin on the oxidation induced hepatic stellate cell damage. We applied siRNA to interfere the endogenous cytoglobin gene, used recombinant cytoglobin protein to treat the completely activated human hepatic stellate cell line LX-2 and the incompletely activated primary rat hepatic stellate cells, or over-expressed cytoglobin protein in LX-2 cells. We used two different oxidative-stress related models, the hydrogen peroxide model and the iron-overload model in our experiments and investigated the proliferation status and the intracellular superoxide level of the cells. The results showed that endogenous cytoglobin exerted significant protective effects on hydrogen peroxide or iron-overload induced LX-2 cell damage, confirming that upregulation of cytoglobin was the protective response of activated hepatic stellate cells to oxidative stress. Recombinant cytoglobin protein could protect LX-2 cells from oxidation induced damage, and prevent primary rat hepatic stellate cells from excessive proliferation and injury. The cytoplasmic reactive oxygen species (ROS) scavenging capacity of the recombinant cytoglobin protein was not as good as its capacity in scavenging ROS outside the cells, likely owing to the lack of active transporting mechanisms. Intracellular over-expression of cytoglobin protein could exert significant protective effect on LX-2 cells treated with hydrogen peroxide or iron-overload. Our results would accelerate the exploitation of new anti-fibrotic targets.
Animals
;
Cell Line
;
Globins
;
genetics
;
pharmacology
;
Hepatic Stellate Cells
;
cytology
;
pathology
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Oxidative Stress
;
drug effects
;
Protective Agents
;
pharmacology
;
RNA, Small Interfering
;
genetics
;
Rats
;
Reactive Oxygen Species
;
metabolism
4.Capsid assembly and DNA encapsidation of adeno-associated virus.
Qizhao WANG ; Yinghui LÜ ; Zhaofa LI ; Yong DIAO ; Rui'an XU
Chinese Journal of Biotechnology 2011;27(4):531-538
Recombinant adeno-associated viral vectors (rAAV) have been widely used as gene therapy vectors in clinical trials. Here, we reviewed the genomic structures and replication mechanisms of wt-AAV. Then, the assembly of capsid and the encapsidation of genomic DNA, two major events during AAV pakaging, was discussed in detail. Although the overall pattern of virus assembly and encapsidation is known, the molecular mechanisms and the structure-function relationship involved in these processes are not well understood. Further elucidatation of these processes may improve the production technology of rAAV and develop gene drug based on rAAV.
Capsid
;
physiology
;
Capsid Proteins
;
genetics
;
DNA, Viral
;
genetics
;
Dependovirus
;
genetics
;
physiology
;
Genetic Vectors
;
Genome, Viral
;
Virus Assembly
;
genetics
;
physiology
5.Engineering and screening of artificial riboswitch as a novel gene control element.
Huiyong YANG ; Yong DIAO ; Junsheng LIN ; Rui'an XU
Chinese Journal of Biotechnology 2012;28(2):134-143
Various artificial riboswitches have been constructed by utilization of designed aptamers or by modification of natural riboswitch systems, because they can regulate gene expression in a highly efficient, precise and fast way, and promise to supply simple cis-acting, modular, and non-immunogenic system for use in future gene therapy applications. In this review, we present an overview of currently available technologies to design and select engineered riboswitches, and discuss some possible technologies that would allow them highly responsive to non-natural ligands, and dynamic control of gene expression in mammalian cells. Though how to bring custom-designed riboswitches as a novel and versatile tool box to gene control system is still a great challenge, the combination of structure-activity relationship information, computer based molecular design, in vitro selection, and high-through screening will serve as powerful tools for further development of riboswitch based gene regulatory systems.
Aptamers, Nucleotide
;
genetics
;
Gene Expression Regulation
;
genetics
;
Genetic Engineering
;
Genetic Therapy
;
Humans
;
Protein Biosynthesis
;
RNA, Catalytic
;
chemistry
;
genetics
;
Ribosomes
;
genetics
;
Riboswitch
;
genetics
6.Recombinant adeno-associated virus vector related impurities.
Yong DIAO ; Qizhao WANG ; Weidong XIAO ; Rui'an XU
Chinese Journal of Biotechnology 2011;27(5):717-723
Recombinant adeno-associated virus (rAAV)-based vectors that can stably express therapeutic genes in vivo without detectable side-effect have shown great promise for human gene therapy. A major challenge for translation of promising research to clinical development is how to establish clinically compatible purification methods in separating rAAV from potentially pathogenic impurities, especially rAAV vector-related impurities, a class of impurities corresponding to AAV particles that closely resemble bona fide vectors and are difficult to remove. In this review we summarize the assembly process of rAAV vector-related impurities and their characteristics differed with rAAV vectors, and evaluate several current technologies to prevent their formation or separate them from rAAV stocks.
Capsid Proteins
;
isolation & purification
;
Dependovirus
;
genetics
;
isolation & purification
;
physiology
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
genetics
;
isolation & purification
;
Recombination, Genetic
;
Virion
;
isolation & purification
;
Virus Assembly
;
genetics
;
Virus Replication
;
genetics