1.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
2.Research progress on PD-1/PD-L1 inhibitors in neoadjuvant therapy for esophageal cancer
Liji CHEN ; Hongmei MA ; Shifa ZHANG ; Kaize ZHONG ; Dongbao YANG ; Jiuhe SUN ; Hongfeng LIU ; Ru SONG ; Jishan ZHANG ; Haibo CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):714-721
Esophageal cancer is one of the malignant tumors that poses a threat to human health, with both high incidence and malignancy. Currently, surgery following neoadjuvant chemoradiotherapy is the standard treatment for locally advanced esophageal cancer; however, the long-term prognosis remains unsatisfactory. In recent years, inhibitors of programmed death protein-1 (PD-1) and its ligand (programmed death ligand-1, PD-L1) have achieved breakthrough progress in other solid tumors, and research on esophageal cancer is gradually being conducted. With the demonstration of good efficacy of PD-1/PD-L1 inhibitors in the first-line and second-line treatment of advanced unresectable esophageal cancer, their incorporation into neoadjuvant treatment regimens has become a hot topic. Therefore, this article reviews the mechanism of action of PD-1/PD-L1 inhibitors and their application in the neoadjuvant treatment of esophageal cancer.
3.Molecular Mechanisms Underlying Sleep Deprivation-induced Acceleration of Alzheimer’s Disease Pathology
Si-Ru YAN ; Ming-Yang CAI ; Ya-Xuan SUN ; Qing HUO ; Xue-Ling DAI
Progress in Biochemistry and Biophysics 2025;52(10):2474-2485
Sleep deprivation (SD) has emerged as a significant modifiable risk factor for Alzheimer’s disease (AD), with mounting evidence demonstrating its multifaceted role in accelerating AD pathogenesis through diverse molecular, cellular, and systemic mechanisms. SD is refined within the broader spectrum of sleep-wake and circadian disruption, emphasizing that both acute total sleep loss and chronic sleep restriction destabilize the homeostatic and circadian processes governing glymphatic clearance of neurotoxic proteins. During normal sleep, concentrations of interstitial Aβ and tau fall as cerebrospinal fluid oscillations flush extracellular waste; SD abolishes this rhythm, causing overnight rises in soluble Aβ and tau species in rodent hippocampus and human CSF. Orexinergic neurons sustain arousal, and become hyperactive under SD, further delaying sleep onset and amplifying Aβ production. At the molecular level, SD disrupts Aβ homeostasis through multiple converging pathways, including enhanced production via beta-site APP cleaving enzyme 1 (BACE1) upregulation, coupled with impaired clearance mechanisms involving the glymphatic system dysfunction and reduced Aβ-degrading enzymes (neprilysin and insulin-degrading enzyme). Cellular and histological analyses revealed that these proteinopathies are significantly exacerbated by SD-induced neuroinflammatory cascades characterized by microglial overactivation, astrocyte reactivity, and sustained elevation of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) through NF‑κB signaling and NLRP3 inflammasome activation, creating a self-perpetuating cycle of neurotoxicity. The synaptic and neuronal consequences of chronic SD are particularly profound and potentially irreversible, featuring reduced expression of critical synaptic markers (PSD95, synaptophysin), impaired long-term potentiation (LTP), dendritic spine loss, and diminished neurotrophic support, especially brain-derived neurotrophic factor (BDNF) depletion, which collectively contribute to progressive cognitive decline and memory deficits. Mechanistic investigations identify three core pathways through which SD exerts its neurodegenerative effects: circadian rhythm disruption via BMAL1 suppression, orexin system hyperactivity leading to sustained wakefulness and metabolic stress, and oxidative stress accumulation through mitochondrial dysfunction and reactive oxygen species overproduction. The review critically evaluates promising therapeutic interventions including pharmacological approaches (melatonin, dual orexin receptor antagonists), metabolic strategies (ketogenic diets, and Mediterranean diets rich in omega-3 fatty acids), lifestyle modifications (targeted exercise regimens, cognitive behavioral therapy for insomnia), and emerging technologies (non-invasive photobiomodulation, transcranial magnetic stimulation). Current research limitations include insufficient understanding of dose-response relationships between SD duration/intensity and AD pathology progression, lack of long-term longitudinal clinical data in genetically vulnerable populations (particularly APOE ε4 carriers and those with familial AD mutations), the absence of standardized SD protocols across experimental models that accurately mimic human chronic sleep restriction patterns, and limited investigation of sex differences in SD-induced AD risk. The accumulated evidence underscores the importance of addressing sleep disturbances as part of multimodal AD prevention strategies and highlights the urgent need for clinical trials evaluating sleep-focused interventions in at-risk populations. The review proposes future directions focused on translating mechanistic insights into precision medicine approaches, emphasizing the need for biomarkers to identify SD-vulnerable individuals, chronotherapeutic strategies aligned with circadian biology, and multi-omics integration across sleep, proteostasis and immune profiles may delineate precision-medicine strategies for at-risk populations. By systematically examining these critical connections, this analysis positions sleep quality optimization as a viable strategy for AD prevention and early intervention while providing a comprehensive roadmap for future mechanistic and interventional research in this rapidly evolving field.
4.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control
5.PD-1 Inhibitor Combined with Azacitidine and HAG Regimen for the Treatment of Relapsed/Refractory Acute Myeloid Leukemia: A Prospective, Single-Arm, Phase II Clinical Study.
Cheng-Sen CAI ; Ru-Ju WANG ; Xiao-Yan XU ; Cheng-Yuan GU ; Hui-Zhu KANG ; Yue-Jun LIU ; Yue HAN
Journal of Experimental Hematology 2025;33(4):972-979
OBJECTIVE:
To evaluate the efficacy and safety of PD-1 inhibitor combined with azacitidine and HAG regimen in the treatment of relapsed/refractory acute myeloid leukemia (R/R AML).
METHODS:
This study is a prospective, single-arm, phase II clinical trial that included R/R AML patients who met the inclusion criteria and were treated at The First Affiliated Hospital of Soochow University from December 2020 to August 2023. Patients could undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT) after salvage therapy. The efficacy and safety were evaluated.
RESULTS:
Twenty patients were enrolled, including 14 males and 6 females, with an average age of (50.7±15.3) years. The overall response rate (ORR) after one cycle of the treatment was 75.0% (15/20), and 35.0% (7/20) of the patients achieved complete remission (CR) or complete remission with incomplete hematologic recovery (CRi) after two cycles of the treatment. Eight patients received allo-HSCT. The main adverse events were hematologic toxicities, and no grade 5 adverse events occurred.
CONCLUSION
The combination of PD-1 inhibitor, azacitidine, and the HAG regimen is a feasible and relatively safe treatment option for R/R AML, thus, to be worth further study.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Azacitidine/administration & dosage*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Adult
;
Hematopoietic Stem Cell Transplantation
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Programmed Cell Death 1 Receptor/antagonists & inhibitors*
;
Aged
6.Effect and Safety of Fuzheng Huazhuo Decoction against Prolonged SARS-CoV-2 Clearance: A Retrospective Cohort Study.
Wen ZHANG ; Hong-Ze WU ; Xiang-Ru XU ; Yu-Ting PU ; Cai-Yu CHEN ; Rou DENG ; Min CAO ; Ding SUN ; Hui YI ; Shuang ZHOU ; Bang-Jiang FANG
Chinese journal of integrative medicine 2025;31(5):387-393
OBJECTIVE:
To evaluate the effect and safety of Chinese medicine (CM) Fuzheng Huazhuo Decoction (FHD) in treating patients with coronavirus disease 2019 (COVID-19) who persistently tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
METHODS:
This retrospective cohort study was conducted at Shanghai New International Expo Center shelter hospital in China between April 1 and May 30, 2022. Patients diagnosed as COVID-19 with persistently positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results for ⩾8 days after diagnosis were enrolled. Patients in the control group received conventional Western medicine (WM) treatment, while those in the FHD group received conventional WM plus FHD for at least 3 days. The primary outcome was viral clearance time. Secondary outcomes included negative conversion rate within 14 days, length of hospital stay, cycle threshold (Ct) values of the open reading frame 1ab (ORF1ab) and nucleocapsid protein (N) genes, and incidence of new-onset symptoms during hospitalization. Adverse events (AEs) that occurred during the study period were recorded.
RESULTS:
A total of 1,765 eligible patients were enrolled in this study (546 in the FHD group and 1,219 in the control group). Compared with the control group, patients receiving FHD treatment showed shorter viral clearance time for nucleic acids [hazard ratio (HR): 1.500, 95% confidence interval (CI): 1.353-1.664, P<0.001] and hospital stays (HR: 1.371, 95% CI: 1.238-1.519, P<0.001), and a higher negative conversion rate within 14 days (96.2% vs. 82.6%, P<0.001). The incidence of new-onset symptoms was 59.5% in the FHD group, similar to 57.8% in the control group (P>0.05). The Ct values of ORF1ab and N genes increased more rapidly over time in the FHD group than those in the control group post-randomization (ORF1ab gene: β =0.436±0.053, P<0.001; N gene: β =0.415 ±0.053, P<0.001). The incidence of AEs in the FHD group was lower than that in the control group (24.2% vs. 35.4%, P<0.001). No serious AEs were observed.
CONCLUSION
FHD was effective and safe for patients with persistently positive SARS-CoV-2 PCR tests. (Registration No. ChiCTR2200063956).
Humans
;
Drugs, Chinese Herbal/adverse effects*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
COVID-19 Drug Treatment
;
SARS-CoV-2/drug effects*
;
COVID-19/virology*
;
Adult
;
Aged
;
Treatment Outcome
7.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
8.Basic and Clinical Research of Fecal Microbiota Transplantation in The Treatment of Central Nervous System Diseases
Hong-Ru LI ; Cai-Hong LEI ; Shu-Wen LIU ; Yuan YANG ; Hai-Xia CHEN ; Run ZHANG ; Yin-Jie CUI ; Zhong-Zheng LI
Progress in Biochemistry and Biophysics 2024;51(11):2921-2935
As a microbial therapy method, fecal microbiota transplantation (FMT) has attracted the attention of researchers in recent years. As one of the most direct and effective methods to improve gut microbiota, FMT achieves therapeutic benefits by transplanting functional gut microbiota from healthy human feces into the intestines of patients to reconstruct new gut microbiota. FMT has been proven to be an effective treatment for gastrointestinal diseases such as Clostridium difficile infection, irritable bowel syndrome, and inflammatory bowel disease. In addition, the clinical and basic research of FMT outside the gastrointestinal system is also emerging. It is worth noting that there is bidirectional communication between the gut microbial community and the central nervous system (CNS) through the gut-brain axis. Some gut bacteria can synthesize and release neurotransmitters such as glutamate, gamma-aminobutyric acid (GABA) and dopamine. Imbalanced gut microbiota may interfere with the normal levels of these neurotransmitters, thereby affecting brain function. Gut microbiota can also produce metabolites that may cross the blood-brain barrier and affect CNS function. FMT may affect the occurrence and development of CNS and its related diseases by reshaping the gut microbiota of patients through a variety of pathways such as nerves, immunity, and metabolites. This article introduces the development of FMT and the research status of FMT in China, and reviews the basic and clinical research of FMT in neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neurotraumatic diseases (spinal cord injury, traumatic brain injury) and stroke from the characteristics of three types of nervous system diseases, the characteristics of intestinal flora, and the therapeutic effect and mechanism of fecal microbiota transplantation, summarize the common mechanism of fecal microbiota transplantation in the treatment of CNS diseases and the therapeutic targets. We found that the common mechanisms of FMT in the treatment of nervous system diseases may include the following 3 categories through summary and analysis. (1) Gut microbiota metabolites, such as SCFAs, TMAO and LPS. (2) Inflammatory factors and immune inflammatory pathways such as TLR-MyD88 and NF-κB. (3) Neurotransmitter 5-HT. In the process of reviewing the studies, we found the following problems. (1) In basic researches on the relationship between FMT and CNS diseases, there are relatively few studies involving the autonomic nervous system pathway. (2) Clinical trial studies have shown that FMT improves the severity of patients’ symptoms and may be a promising treatment for a variety of neurological diseases. (3) The improvement of clinical efficacy is closely related to the choice of donor, especially emphasizing that FMT from healthy and young donors may be the key to the improvement of neurological diseases. However, there are common challenges in current research on FMT, such as the scientific and rigorous design of FMT clinical trials, including whether antibiotics are used before transplantation or different antibiotics are used, as well as different FMT processes, different donors, different functional analysis methods of gut microbiota, and the duration of FMT effect. Besides, the safety of FMT should be better elucidated, especially weighing the relationship between the therapeutic benefits and potential risks of FMT carefully. It is worth mentioning that the clinical development of FMT even exceeds its basic research. Science and TIME rated FMT as one of the top 10 breakthroughs in the field of biomedicine in 2013. FMT therapy has great potential in the treatment of nervous system diseases, is expected to open up a new situation in the medical field, and may become an innovative weapon in the medical field.
9.Progress of neoadjuvant immunotherapy in the treatment of locally advanced resectable esophageal carcinoma
Junjun HUANG ; Jiuhe SUN ; Shifa ZHANG ; Hongfeng LIU ; Ru SONG ; Qian WANG ; Liji CHEN ; Haibo CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(07):1058-1065
Surgery is the preferred treatment for resectable esophageal cancer, but in locally advanced esophageal cancer, the effect of surgery alone is not ideal, so surgery-based comprehensive treatment is the best option. Neoadjuvant therapy has become a standard treatment in the treatment of locally advanced resectable esophageal cancer. Neoadjuvant therapy includes neoadjuvant chemotherapy, radiochemotherapy, immunotherapy, targeted therapy, etc. With the significant efficacy and acceptable toxicity of immunotherapy in the first-line and second-line treatment of advanced esophageal cancer, neoadjuvant immunotherapy has become a research hotspot of locally advanced resectable esophageal cancer. This article reviews the latest research progress and some limitations of neoadjuvant immunotherapy in locally advanced resectable esophageal cancer.
10.Protective role and mechanistic exploration of Irisin in doxorubicin induced-cardiomyopathy
Yu-Ge JIN ; Song-Sen LI ; Hao WANG ; Cai-Ru GUO ; Bing-Bing ZHANG ; Hao-Jie CHEN ; Ya-Xin BAN ; Ru-Bing LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(2):220-224
Objective To study the protective effect of Irisin in doxorubicin(Dox)induced-Cardiomyopathy and its possible mechanism.Methods AC 16 cells were used to construct Dox injury model and divided into control group(AC 16 cells were cultured with complete medium),Irisin group(AC16 cells were treated with 10 ng·L-1 Irisin for 24 h),Dox group(AC 16 cells were treated with 4 μmol·L-1 Dox for 24 h),Dox+Irisin group(AC 16 cells were pretreated with 10 ng·L-1 Irisin for 2 h,and then treated with 4 pmol·L-1 Dox for 24 h).Cell counting kit-8(CCK-8),terminal deoxynucleotidyl transferase-mediated nick end labeling(TUNEL)and lactate dehydrogenase(LDH)were used to detect the proliferation,apoptosis and mortality of AC 16 cells.Western blot was used to detect the expression levels of nuclear factor-κB(NF-κB)signaling pathway and apoptotic factors B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax)and caspase-9 protein.Mito-Tracker Red CMXRos probe was used to detect mitochondrial membrane potential.Results In the contrl group,Irisin group,Dox group,Dox+Irisin group,the rate of apoptosis were(0.97±0.09)%,0,(42.80±6.70)%,(11.74±1.79)%;the expression of Bax protein were 0.85±0.01,0.36±0.02,1.15±0.07,0.37±0.11;the expression of caspase-9 protein were 0.52±0.02,0.59±0.03,1.11±0.02,0.67±0.08;the expression of Bcl-2 protein were 1.01±0.04,1.05±0.25,0.43±0.02 and 0.99±0.30;the probability of mitochondrial damage were(0.02±0.01)%,(0.5±0.15)%,(38.6±2.39)%,(1.58±0.54)%.The difference of the above indexes between the contrl group and the Dox group were statistically significant(all P<0.05);the difference between Dox group and Dox+Irisin group were statisically significant(all P<0.05).Conclusion Irisin could reduce the expression level of Bax,caspase-9,p-NF-κB,and p-mTOR caused by Dox,increase the expression level of Bcl-2,ameliorate the myocardial damage caused by Dox,and reduce cardiotoxicity.

Result Analysis
Print
Save
E-mail