1.Clinical characteristics and outcomes of thrombotic microangiopathy in Malaysia.
Yee Yee YAP ; Jameela SATHAR ; Kian Boon LAW ; Putri Astina Binti ZULKURNAIN ; Syed Carlo EDMUND ; Kian Meng CHANG ; Ross BAKER
Blood Research 2018;53(2):130-137
BACKGROUND: Thrombotic microangiopathy (TMA) with non-deficient ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif 13) outcome is unknown hence the survival analysis correlating with ADAMTS-13 activity is conducted in Malaysia. METHODS: This was a retrospective epidemiological study involving all cases of TMA from 2012–2016. RESULTS: We evaluated 243 patients with a median age of 34.2 years; 57.6% were female. Majority of the patients were Malay (62.5%), followed by Chinese (23.5%) and Indian (8.6%). The proportion of patients with thrombotic thrombocytopenic purpura (TTP) was 20.9%, 72.2% of which were acquired while 27.8% were congenital. Patients with ADAMTS-13 activity ≥5% had a four-fold higher odds of mortality compared to those with ADAMTS-13 activity <5% (odds ratio: 4.133, P=0.0425). The mortality rate was 22.6% (N=55). Most cases had secondary etiologies (42.5%), followed by acquired TTP (16.6%), atypical hemolytic uremic syndrome (HUS) or HUS (12.8%) and congenital TTP (6.4%). Patients with secondary TMA had inferior overall survival (P=0.0387). The secondary causes comprised systemic lupus erythematosus (30%), infection (29%), pregnancy (10%), transplant (8%), malignancy (6%), and drugs (3%). Transplant-associated TMA had the worst OS (P=0.0016) among the secondary causes. Plasma exchange, methylprednisolone and intravenous immunoglobulin were recorded as first-line treatments in 162 patients, while rituximab, bortezomib, vincristine, azathioprine, cyclophosphamide, cyclosporine, and tacrolimus were described in 78 patients as second-line treatment. CONCLUSION: This study showed that TMA without ADAMTS-13 deficiency yielded inferior outcomes compared to TMA with severeADAMTS-13 deficiency, although this difference was not statistically significant.
Asian Continental Ancestry Group
;
Atypical Hemolytic Uremic Syndrome
;
Azathioprine
;
Bortezomib
;
Cyclophosphamide
;
Cyclosporine
;
Epidemiologic Studies
;
Female
;
Humans
;
Immunoglobulins
;
Lupus Erythematosus, Systemic
;
Malaysia*
;
Methylprednisolone
;
Mortality
;
Plasma Exchange
;
Pregnancy
;
Purpura, Thrombotic Thrombocytopenic
;
Retrospective Studies
;
Rituximab
;
Tacrolimus
;
Thrombospondins
;
Thrombotic Microangiopathies*
;
Vincristine
2.Prognostic utility of ADAMTS13 activity for the atypical hemolytic uremic syndrome (aHUS) and comparison of complement serology between aHUS and thrombotic thrombocytopenic purpura
Jisu OH ; Doyeun OH ; Seon Ju LEE ; Jeong Oh KIM ; Nam Keun KIM ; So Young CHONG ; Ji Young HUH ; Ross I BAKER ;
Blood Research 2019;54(3):218-228
BACKGROUND: Atypical hemolytic uremic syndrome (aHUS) involves dysregulation of the complement system, but whether this also occurs in thrombotic thrombocytopenic purpura (TTP) remains unclear. Although these conditions are difficult to differentiate clinically, TTP can be distinguished by low (<10%) ADAMTS13 activity. The aim was to identify the differences in complement activation products between TTP and aHUS and investigate ADAMTS13 activity as a prognostic factor in aHUS. METHODS: We analyzed patients with thrombotic microangiopathy diagnosed as TTP (N=48) or aHUS (N=50), selected from a Korean registry (N=551). Complement activation products in the plasma samples collected from the patients prior to treatment and in 40 healthy controls were measured by ELISA. RESULTS: The levels of generalized (C3a), alternate (factor Bb), and terminal (C5a and C5b-9) markers were significantly higher (all P<0.01) in the patients than in the healthy controls. Only the factor Bb levels significantly differed (P=0.008) between the two disease groups. In aHUS patients, high normal ADAMTS13 activity (≥77%) was associated with improved treatment response (OR, 6.769; 95% CI, 1.605–28.542; P=0.005), remission (OR, 6.000; 95% CI, 1.693–21.262; P=0.004), exacerbation (OR, 0.242; 95% CI, 0.064–0.916; P=0.031), and disease-associated mortality rates (OR, 0.155; 95% CI, 0.029–0.813; P=0.017). CONCLUSION: These data suggest that complement biomarkers, except factor Bb, are similarly activated in TTP and aHUS patients, and ADAMTS13 activity can predict the treatment response and outcome in aHUS patients.
Atypical Hemolytic Uremic Syndrome
;
Biomarkers
;
Complement Activation
;
Complement System Proteins
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Mortality
;
Plasma
;
Purpura, Thrombotic Thrombocytopenic
;
Thrombotic Microangiopathies
3.Validating lactate dehydrogenase (LDH) as a component of the PLASMIC predictive tool (PLASMIC-LDH)
Christopher Chin KEONG LIAM ; Jim Yu-Hsiang TIAO ; Yee Yee YAP ; Yi Lin LEE ; Jameela SATHAR ; Simon MCRAE ; Amanda DAVIS ; Jennifer CURNOW ; Robert BIRD ; Philip CHOI ; Pantep ANGCHAISUKSIRI ; Sim Leng TIEN ; Joyce Ching MEI LAM ; Doyeun OH ; Jin Seok KIM ; Sung-Soo YOON ; Raymond Siu-Ming WONG ; Carolyn LAUREN ; Eileen Grace MERRIMAN ; Anoop ENJETI ; Mark SMITH ; Ross Ian BAKER
Blood Research 2023;58(1):36-41
Background:
The PLASMIC score is a convenient tool for predicting ADAMTS13 activity of <10%.Lactate dehydrogenase (LDH) is widely used as a marker of haemolysis in thrombotic thrombocytopenic purpura (TTP) monitoring, and could be used as a replacement marker for lysis. We aimed to validate the PLASMIC score in a multi-centre Asia Pacific region, and to explore whether LDH could be used as a replacement marker for lysis.
Methods:
Records of patients with thrombotic microangiopathy (TMA) were reviewed. Patients’ ADAMTS13 activity levels were obtained, along with clinical/laboratory findings relevant to the PLASMIC score. Both PLASMIC scores and PLASMIC-LDH scores, in which LDH replaced traditional lysis markers, were calculated. We generated a receiver operator characteristics (ROC) curve and compared the area under the curve values (AUC) to determine the predictive ability of each score.
Results:
46 patients fulfilled the inclusion criteria, of which 34 had ADAMTS13 activity levels of <10%. When the patients were divided into intermediate-to-high risk (scores 5‒7) and low risk (scores 0‒4), the PLASMIC score showed a sensitivity of 97.1% and specificity of 58.3%, with a positive predictive value (PPV) of 86.8% and negative predictive value (NPV) of 87.5%. The PLASMIC-LDH score had a sensitivity of 97.1% and specificity of 33.3%, with a PPV of 80.5% and NPV of 80.0%.
Conclusion
Our study validated the utility of the PLASMIC score, and demonstrated PLASMIC-LDH as a reasonable alternative in the absence of traditional lysis markers, to help identify high-risk patients for treatment via plasma exchange.