Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA. Secondly, intrinsic mode functions (IMF) of PLI was filtered. The noise suppression rate (NSR) and the signal distortion ratio (SDR) were used to evaluate the effect of de-noising algorithm. Finally, the ECG signals were re-constructed. Based on the experimental comparison, it was concluded that the proposed algorithm had better filtering functions than the improved Levkov algorithm, because it could not only effectively filter the PLI, but also have smaller SDR value.
Algorithms
;
Electrocardiography
;
Humans