1.Dual screening for targeted gene replacement mutant in Magnaporthe oryzae with GUS as negative marker.
Jiaoyu WANG ; Zhen ZHANG ; Xinfa DU ; Rongyao CHAI ; Xueqin MAO ; Haiping QIU ; Yanli WANG ; Guochang SUN
Chinese Journal of Biotechnology 2009;25(1):129-138
To improve the efficiency of targeted gene replacement (TGR), a dual screen (DS) system with gusA gene as negative selective marker (GUS-DS) was developed in Magnaporthe oryzae. First, we tested the endogenous beta-glucuronidase (GUS) activities of 78 fungal strains. All tested strains were GUS-, only with 3 exceptions. Whereas, after the gusA being introduced in, M. oryzae, Fusarium oxysporum and Colletotrichum lagenarium acquired high GUS activities. The gusA is thus usable as a selective maker in fungal species. With gusA as the negative marker, HPH gene as the positive marker, and the peroxisomal targeting signal receptor genes MGPEX5 and MGPEX7 as 2 instances of target genes, we established the GUS-DS system. After transformation, we collected the transformants from hygromycin B screen media and then tested the GUS activities of them. The GUS- ones were selected as potential mutants and checked in succession by PCR and Southern blotting to identify the true mutants and calculate the efficiency of GUS-DS. As a result, GUS-DS improved the screen efficiency for delta mgpex5 from 65.8% to 90.6%, and for delta mgpex7 from 31.2% to 82.8%. In addition, we established a multiple PCR (M-PCR) method for mutant confirmation. By amplifying the different regions at the targeted locus, M-PCR differentiated the wild type, the ectopic transformants and the mutants effectively and rapidly, and had the same reliability as Southern blotting. In conclusion, GUS-DS and M-PCR are useful tools to improve the efficiency of TGR and would be helpful for fungal genomics.
Escherichia coli
;
enzymology
;
genetics
;
Gene Expression Regulation, Enzymologic
;
Genes, Fungal
;
Glucuronidase
;
genetics
;
Magnaporthe
;
genetics
;
Mutagenesis, Insertional
;
methods
;
Mutation
;
Recombination, Genetic
;
Transformation, Genetic