1.Fluorine-thiol displacement probes for acetaminophen's hepatotoxicity.
Benjamin L PRATHER ; Shuyue JI ; Yue ZHAO ; Femil Joseph SHAJAN ; Mi ZHAO ; Zakey Yusuf BUUH ; Robert MALONEY ; Rui ZHANG ; Carson COHEN ; Rongsheng E WANG
Acta Pharmaceutica Sinica B 2023;13(1):204-212
Chemicals possessing reactive electrophiles can denature innate proteins leading to undesired toxicity, and the overdose-induced liver injury by drugs containing electrophiles has been one of the major causes of non-approval and withdraw by the US Food and Drug Administration (FDA). Elucidating the associated proteins could guide the future development of therapeutics to circumvent these drugs' toxicities, but was largely limited by the current probing tools due to the steric hindrance of chemical tags including the common "click chemistry" labels. Taking the widely used non-steroidal anti-inflammatory drug acetaminophen (APAP) as an example, we hereby designed and synthesized an APAP analogue using fluorine as a steric-free label. Cell toxicity studies indicated our analogue has similar activity to the parent drug. This analogue was applied to the mouse hepatocellular proteome together with the corresponding desthiobiotin-SH probe for subsequent fluorine-thiol displacement reactions (FTDRs). This set of probes has enabled the labeling and pull-down of hepatocellular target proteins of the APAP metabolite as validated by Western blotting. Our preliminary validation results supported the interaction of APAP with the thioredoxin protein, which is an important redox protein for normal liver function. These results demonstrated that our probes confer minimal steric perturbation and mimic the compounds of interest, allowing for global profiling of interacting proteins. The fluorine-thiol displacement probing system could emerge as a powerful tool to enable the investigation of drug-protein interactions in complex biological environments.
2.Comparison of three methods for preparation of bacterial ghosts from avian pathogenic Escherichia coli.
Jian'gang HU ; Hongliang DONG ; Lixia FU ; Jiakun ZUO ; Xiaoka WU ; Rongsheng MI ; Yan HUANG ; Ke LU ; Zhaoguo CHEN ; Xian'gan HAN ; Shijun HU
Chinese Journal of Biotechnology 2017;33(12):2009-2016
Bacterial ghosts are bacterial cell envelopes devoid of cytoplasmic contents while maintaining their cellular morphology, which can be used as a new vaccine and delivery vector. In this study, a clinical isolate of avian pathogenic Escherichia coli (APEC) strain DE17 was used to prepare bacterial ghost through three different ways. The results showed that the cleavage efficiency of DE17 bacterial ghost was 99.9% with the lysis plasmid containing the PhiX174 lysis gene E. Scanning electron microscopy showed that transmembrane tunnels were formed in the middle or both ends of the cell envelope of DE17. Furthermore, the DE17 bacterial ghost was prepared with one of cell penetrating peptides (CPPs) named MAP (KLALKLALKALKAALKLA), which will completely inactivate DE17 (OD₆₀₀=0.1) by 10 μmol/L MAP. The cell envelope showed a gully-like structure and obvious transmembrane tunnels were not found through the SEM. However, the DE17 could not be lysed by importing the lysis plasmid (pBV220-MAP), which was used to express MAP. The present study will benefit for research on bacterial ghost preparation methods and provide a reference for biosafety of bacterial ghost vaccines.