1.A study on the association between insulin resistance and genome-wide DNA methylation based on Shanghai monozygotic twins
Jingyuan FENG ; Rongfei ZHOU ; Hongwei LIU ; Zihan HU ; Fei WU ; Huiting WANG ; Junhong YUE ; Zhenni ZHU ; Fan WU
Chinese Journal of Epidemiology 2024;45(7):932-940
Objective:To explore the association between insulin resistance (IR) and genome-wide DNA methylation based on Shanghai twin study.Methods:Monozygotic twins (MZ) from Shanghai were recruited during 2012-2013, 2017-2018, and 2022-2023. Data were collected by questionnaire survey, physical examination and laboratory tests. Genome-wide DNA methylation was quantified. Generalized linear mixed effect model was applied to analyze the association between methylation level at each site and homeostatic model assessment 2-insulin resistance (HOMA2-IR). Non-paired and paired designs were used to assess the association between DNA methylation and phenotype of IR. Cluster analysis was conducted to identify the clusters of top significant sites. Generalized linear regression was performed to examine the differential methylation patterns from clusters.Results:A total of 100 MZ pairs were included in this study. Hypermethylated cg10535199-2q23.1 ( β=0.74%, P=1.51×10 -7, OR=1.06, 95% CI: 1.03-1.09) and ch.17.49619327- SPOP ( β=0.23%, P=7.54×10 -7, OR=1.17, 95% CI: 1.08-1.28) were identified with suggestive significance. After correcting for multiple testing, no sites reached genome-wide significance. There was no statistical significance in the paired analysis. Two clusters with hypomethylated ( β=-0.39%, P<0.001) and hypermethylated ( β=0.47%, P<0.001) patterns were observed for HOMA2-IR. Conclusions:IR was significantly associated with DNA methylation, and genetic factors might contribute to the association.
2.Endoscopic dilation guided by two guidewires: a novel method in establishing channels in percutaneous nephrolithotomy
Quanliang DOU ; Liuhua ZHOU ; Rongfei LI ; Jingyu LIU ; Zhiqiang QIN ; Luwei XU
Journal of Modern Urology 2023;28(11):980-983
【Objective】 To explore the safety and efficacy of a novel endoscopic two-wire guided dilation in the creation of channels in percutaneous nephrolithotomy (PCNL). 【Methods】 Clinical records of 180 patients undergoing PCNL during Oct.2020 and Oct.2022 were retrospectively analyzed. The patients were divided into three groups, 60 in AMD group (fascial amplatz dilation), 60 in OSD group (one shot dilation) and 60 in END group (endoscopic dilation). Time to establish channels, operating time, failure of access, stone clearance rate, drop in hemoglobin, embolization rate, fever rate, blood transfusion rate and postoperative hospitalization were compared among the three groups. 【Results】 There were no significant differences in the general data among the three groups (P>0.05). Compared with AMD and OSD groups, END group needed significantly reduced time to establish the first channel [(5.6±0.8) min vs. (4.9±1.4) min vs. (4.2±0.5) min, (P<0.05)] . Compared with OSD group, END and AMD groups had significantly more hemoglobin drop [(14.0±17.6) g/L vs. (19.4±12.6) g/L vs. (10.2±6.8) g/L, (P<0.05)] . There were no significant differences in terms of failure of establishing channels, operating time, stone clearance rate, embolization rate, fever rate, blood transfusion rate and postoperative hospitality. Four patients needed selective renal artery embolization (1 case in AMD group and 3 in OSD group). No serious complications such as organ injuries, septic shock or death occurred. 【Conclusion】 Endoscopic two-wire guided dilation is simple, with few complications and good application value.
3.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.
4.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.