Gastrointestinal sphincters play a vital role in gut function and motility by separating the gut into functional segments. Traditionally, function of sphincters including the esophagogastric junction is studied using endoscopy and manometry. However, due to its dynamic biomechanical properties, data on distensibility and compliance may provide a more accurate representation of the sphincter function. The endolumenal functional lumen imaging probe (EndoFLIP) system uses a multi-detector impedance planimetry system to provide data on tissue distensibility and geometric changes in the sphincter as measured through resistance to volumetric distention with real-time images. With the advent of EndoFLIP studies, esophagogastric junction dysfunction and other disorders of the stomach and bowels may be better evaluated. It may be utilized as a tool in predicting effectiveness of endoscopic and surgical treatments as well as patient outcomes.
Compliance
;
Electric Impedance
;
Endoscopy
;
Esophagogastric Junction
;
Gastrointestinal Motility*
;
Humans
;
Manometry
;
Stomach