1.Polymorphisms in genes involved in innate immunity and susceptibility to benzene-induced hematotoxicity.
Min SHEN ; Luoping ZHANG ; Kyoung Mu LEE ; Roel VERMEULEN ; H Dean HOSGOOD ; Guilan LI ; Songnian YIN ; Nathaniel ROTHMAN ; Stephen CHANOCK ; Martyn T SMITH ; Qing LAN
Experimental & Molecular Medicine 2011;43(6):374-378
Benzene, a recognized hematotoxicant and carcinogen, can damage the human immune system. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and benzene hematotoxicity in a cross-sectional study of workers exposed to benzene (250 workers and 140 controls). A total of 1,236 tag SNPs in 149 gene regions of six pathways were included in the analysis. Six gene regions were significant for their association with white blood cell (WBC) counts (MBP, VCAM1, ALOX5, MPO, RAC2, and CRP) based on gene-region (P < 0.05) and SNP analyses (FDR < 0.05). VCAM1 rs3176867, ALOX5 rs7099684, and MPO rs2071409 were the three most significant SNPs. They showed similar effects on WBC subtypes, especially granulocytes, lymphocytes, and monocytes. A 3-SNP block in ALOXE3 (rs7215658, rs9892383, and rs3027208) showed a global association (omnibus P = 0.0008) with WBCs even though the three SNPs were not significant individually. Our study suggests that polymorphisms in innate immunity genes may play a role in benzene-induced hematotoxicity; however, independent replication is necessary.
Adult
;
Arachidonate 5-Lipoxygenase/genetics/*metabolism
;
Benzene/toxicity
;
Cell Count
;
Cross-Sectional Studies
;
Female
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Hematologic Diseases/chemically induced/genetics/*metabolism/pathology
;
Humans
;
Immunity, Innate/genetics
;
Leukocytes/*drug effects/metabolism/pathology
;
Male
;
Occupational Exposure/adverse effects
;
Peroxidase/genetics/*metabolism
;
Polymorphism, Single Nucleotide
;
Vascular Cell Adhesion Molecule-1/genetics/*metabolism
2.Household air pollution and lung cancer in China: a review of studies in Xuanwei.
Wei Jie SEOW ; Wei HU ; Roel VERMEULEN ; H Dean Hosgood III ; George S DOWNWARD ; Robert S CHAPMAN ; Xingzhou HE ; Bryan A BASSIG ; Christopher KIM ; Cuiju WEN ; Nathaniel ROTHMAN ; Qing LAN
Chinese Journal of Cancer 2014;33(10):471-475
Over half of the world's population is exposed to household air pollution from the burning of solid fuels at home. Household air pollution from solid fuel use is a leading risk factor for global disease and remains a major public health problem, especially in low- and mid-income countries. This is a particularly serious problem in China, where many people in rural areas still use coal for household heating and cooking. This review focuses on several decades of research carried out in Xuanwei County, Yunnan Province, where household coal use is a major source of household air pollution and where studies have linked household air pollution exposure to high rates of lung cancer. We conducted a series of case-control and cohort studies in Xuanwei to characterize the lung cancer risk in this population and the factors associated with it. We found lung cancer risk to vary substantially between different coal types, with a higher risk associated with smoky (i.e., bituminous) coal use compared to smokeless (i.e., anthracite) coal use. The installation of a chimney in homes resulted in a substantial reduction in lung cancer incidence and mortality. Overall, our research underscores the need among existing coal users to improve ventilation, use the least toxic fuel, and eventually move toward the use of cleaner fuels, such as gas and electricity.
Air Pollution, Indoor
;
adverse effects
;
China
;
Coal
;
adverse effects
;
classification
;
Cohort Studies
;
Cooking
;
Fossil Fuels
;
Heating
;
Humans
;
Incidence
;
Lung Neoplasms
;
etiology
;
mortality
;
Risk Factors
;
Smoke
;
adverse effects
;
Smoking