1.Zebrafish as an alternative animal model in human and animal vaccination research
Ricardo Lacava BAILONE ; Hirla Costa Silva FUKUSHIMA ; Bianca Helena Ventura FERNANDES ; Luís Kluwe De AGUIAR ; Tatiana CORRÊA ; Helena JANKE ; Princia Grejo SETTI ; Roberto De OLIVEIRA ROÇA ; Ricardo Carneiro BORRA
Laboratory Animal Research 2020;36(2):98-107
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.
2.Factors Associated With the Illness of Nursing Professionals Caused by COVID-19 in Three University Hospitals in Brazil
Larissa Bertacchini de OLIVEIRA ; Luana Mend dees SOUZA ; Fábia Maria de LIMA ; Jack Roberto Silva FHON ; Vilanice Alves de ARAÚJO PÜSCHEL ; Fábio da Costa CARBOGIM
Safety and Health at Work 2022;13(2):255-260
Background:
The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the importance of implementing strategic management that prioritizes the safety of frontline nurse professionals. In this sense, this research was aimed at identifying factors associated with the illness of nursing professionals caused by COVID-19 according to socio-demographic, clinical, and labor variables.
Methods:
A cross-sectional study was conducted in three Brazilian university hospitals with 859 nursing professionals, which include nurses, technicians, and nursing assistants, between November 2020 and February 2021. We present data using absolute and relative frequency. We used Chi-square test for hypothesis testing and multiple logistic regression for predictive analysis and chances of occurrence.
Results:
The rate of nursing professionals affected by COVID-19 was 41.8%, and the factors associated with contamination were the number of people in the same household with COVID-19 and obesity. Being a nurse was a protective factor when the entire nursing team was considered. The model is significant, and its variables represent 56.61% of the occurrence of COVID-19 in nursing professionals.
Conclusion
Obesity and living in the same household as other people affected by COVID-19 increases the risk of contamination by this new coronavirus.
3.Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats
Amanda Lima DELUQUE ; Lucas Ferreira de ALMEIDA ; Beatriz Magalhães OLIVEIRA ; Cláudia Silva SOUZA ; Ana Lívia Dias MACIEL ; Heloísa Della Coletta FRANCESCATO ; Cleonice GIOVANINI ; Roberto Silva COSTA ; Terezila Machado COIMBRA
Journal of Pathology and Translational Medicine 2024;58(5):219-228
Background:
Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms.
Methods:
Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7.
Results:
VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway.
Conclusions
Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
4.Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats
Amanda Lima DELUQUE ; Lucas Ferreira de ALMEIDA ; Beatriz Magalhães OLIVEIRA ; Cláudia Silva SOUZA ; Ana Lívia Dias MACIEL ; Heloísa Della Coletta FRANCESCATO ; Cleonice GIOVANINI ; Roberto Silva COSTA ; Terezila Machado COIMBRA
Journal of Pathology and Translational Medicine 2024;58(5):219-228
Background:
Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms.
Methods:
Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7.
Results:
VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway.
Conclusions
Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
5.Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats
Amanda Lima DELUQUE ; Lucas Ferreira de ALMEIDA ; Beatriz Magalhães OLIVEIRA ; Cláudia Silva SOUZA ; Ana Lívia Dias MACIEL ; Heloísa Della Coletta FRANCESCATO ; Cleonice GIOVANINI ; Roberto Silva COSTA ; Terezila Machado COIMBRA
Journal of Pathology and Translational Medicine 2024;58(5):219-228
Background:
Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms.
Methods:
Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7.
Results:
VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway.
Conclusions
Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
6.Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats
Amanda Lima DELUQUE ; Lucas Ferreira de ALMEIDA ; Beatriz Magalhães OLIVEIRA ; Cláudia Silva SOUZA ; Ana Lívia Dias MACIEL ; Heloísa Della Coletta FRANCESCATO ; Cleonice GIOVANINI ; Roberto Silva COSTA ; Terezila Machado COIMBRA
Journal of Pathology and Translational Medicine 2024;58(5):219-228
Background:
Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms.
Methods:
Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7.
Results:
VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway.
Conclusions
Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.