1.AZF microdeletions associated with idiopathic and non-idiopathic cases with cryptorchidism and varicocele.
Rima DADA ; N P GUPTA ; K KUCHERIA
Asian Journal of Andrology 2002;4(4):259-263
AIMTo identify submicroscopic interstitial deletions in azoospermia factor (AZF) loci in idiopathic and non-idiopathic cases of male infertility in Indians.
METHODSOne hundred and twenty two infertile males with oligozoospermia or azoospermia were included in this study. Semen analysis was done to determine the sperm density, i.e., normospermia (>20 million/mL), oligozoospermia (<20 million/mL) or azoospermia. They were subjected to detailed clinical examination and endocrinological and cytogenetic study. Thirty G-banded metaphases were analyzed in the 122 cases and polymerase chain reaction (PCR) microdeletion analysis was done in 70 cytogenetically normal subjects. For this genomic DNA was extracted using peripheral blood. The STS primers tested in each case were sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). PCR amplifications found to be negative were repeated at least 3 times to confirm the deletion of a given marker. The PCR products were analyzed on a 1.8 % agarose gel.
RESULTSEight of the 70 cases (11.4 %) showed deletion of at least one of the STS markers. Deletions were detected in cases with known and unknown aetiology with bilateral severe testiculopathy and also in cryptorchid and varicocele subjects.
CONCLUSIONAZF microdeletions were seen in both idiopathic and non-idiopathic cases with cryptorchidism and varicocele. The finding of a genetic aetiology in infertile men with varicocele and cryptorchidism suggests the need for molecular screening in non-idiopathic cases.
Adult ; Biopsy, Needle ; Chromosome Banding ; Chromosomes, Human, Y ; Cryptorchidism ; genetics ; Follicle Stimulating Hormone ; blood ; Gene Deletion ; Genetic Loci ; Humans ; Male ; Metaphase ; Oligospermia ; etiology ; genetics ; Polymerase Chain Reaction ; Reference Values ; Semen ; chemistry ; Seminal Plasma Proteins ; genetics ; Sperm Count ; Testis ; pathology ; Varicocele ; genetics
2.Y chromosome microdeletions in azoospermic patients with Klinefelter's syndrome.
Anurag MITRA ; Rima DADA ; Rajeev KUMAR ; Narmada Prasad GUPTA ; Kiran KUCHERIA ; Satish Kumar GUPTA
Asian Journal of Andrology 2006;8(1):81-88
AIMTo study the occurrence of Y chromosome microdeletions in azoospermic patients with Klinefelter's syndrome (KFS).
METHODSBlood and semen samples were collected from azoospermic patients with KFS (n = 14) and a control group of men of proven fertility (n = 13). Semen analysis was done according to World Health Organization (WHO) guidelines. Blood samples were processed for karyotyping, fluorescent in situ hybridization (FISH) and measurement of plasma follicle stimulating hormone (FSH) by radioimmunoassay. To determine Y chromosome microdeletions, polymerase chain reaction (PCR) of 16 sequence tagged sites (STS) and three genes (DFFRY, XKRY and RBM1Y) was performed on isolated genomic DNA. Testicular fine needle aspiration cytology (FNAC) was done in selected cases.
RESULTSY chromosome microdeletions spanning the azoospermia factor (AZF)a and AZFb loci were found in four of the 14 azoospermic patients with KFS. Karyotype and FISH analysis revealed that, of the four cases showing Y chromosome microdeletion, three cases had a 47,XXY/46,XY chromosomal pattern and one case had a 46,XY/47,XXY/48,XXXY/48,XXYY chromosomal pattern. The testicular FNAC of one sample with Y chromosome microdeletion revealed Sertoli cell-only type of morphology. However, no Y chromosome microdeletions were observed in any of the 13 fertile men. All patients with KFS had elevated plasma FSH levels.
CONCLUSIONPatients with KFS may harbor Y chromosome microdeletions and screening for these should be a part of their diagnostic work-up, particularly in those considering assisted reproductive techniques.
Adolescent ; Adult ; Chromosome Deletion ; Chromosomes, Human, Y ; Electrophoresis, Gel, Two-Dimensional ; Genetic Loci ; Humans ; In Situ Hybridization, Fluorescence ; Karyotyping ; Klinefelter Syndrome ; complications ; genetics ; Male ; Mosaicism ; Oligospermia ; etiology ; genetics ; Seminal Plasma Proteins ; genetics ; Sequence Tagged Sites
3.Higher frequency of Yq microdeletions in sperm DNA as compared to DNA isolated from blood.
Rima DADA ; Rakesh KUMAR ; M B SHAMSI ; Rajeev KUMAR ; Kiran KUCHERIA ; Raj K SHARMA ; Satish K GUPTA ; Narmada P GUPTA
Asian Journal of Andrology 2007;9(5):720-722
AIMTo determine if Yq microdeletion frequency and loci of deletion are similar in two tissues (blood and sperm) of different embryological origin.
METHODSThe present study included 52 infertile oligozoospermic cases. In each case, DNA was isolated from blood and sperms and polymerase chain reaction (PCR) microdeletion analysis was done from genomic DNA isolated from both the tissues. The PCR products were analyzed on a 1.8% agarose gel. PCR amplifications found to be negative were repeated at least three times to confirm the deletion of a given marker.
RESULTSOnly 1 case harbored microdeletion in blood DNA, whereas 4 cases harbored microdeletion in sperm DNA.
CONCLUSIONThe frequency of Yq microdeletions is higher in germ cells as compared to blood. As the majority of infertile couples opt for assisted reproduction procreation techniques (ART), Yq microdeletion screening from germ cells is important to understand the genetic basis of infertility, to provide comprehensive counseling and most adapted therapeutics to the infertile couple.
Chromosomes, Human, Y ; genetics ; DNA ; blood ; genetics ; isolation & purification ; Humans ; Male ; Repetitive Sequences, Nucleic Acid ; Sequence Deletion ; Spermatozoa ; physiology
4.Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility
Ashok AGARWAL ; Neel PAREKH ; Manesh Kumar PANNER SELVAM ; Ralf HENKEL ; Rupin SHAH ; Sheryl T HOMA ; Ranjith RAMASAMY ; Edmund KO ; Kelton TREMELLEN ; Sandro ESTEVES ; Ahmad MAJZOUB ; Juan G ALVAREZ ; David K GARDNER ; Channa N JAYASENA ; Jonathan W RAMSAY ; Chak Lam CHO ; Ramadan SALEH ; Denny SAKKAS ; James M HOTALING ; Scott D LUNDY ; Sarah VIJ ; Joel MARMAR ; Jaime GOSALVEZ ; Edmund SABANEGH ; Hyun Jun PARK ; Armand ZINI ; Parviz KAVOUSSI ; Sava MICIC ; Ryan SMITH ; Gian Maria BUSETTO ; Mustafa Emre BAKIRCIOĞLU ; Gerhard HAIDL ; Giancarlo BALERCIA ; Nicolás Garrido PUCHALT ; Moncef BEN-KHALIFA ; Nicholas TADROS ; Jackson KIRKMAN-BROWNE ; Sergey MOSKOVTSEV ; Xuefeng HUANG ; Edson BORGES ; Daniel FRANKEN ; Natan BAR-CHAMA ; Yoshiharu MORIMOTO ; Kazuhisa TOMITA ; Vasan Satya SRINI ; Willem OMBELET ; Elisabetta BALDI ; Monica MURATORI ; Yasushi YUMURA ; Sandro LA VIGNERA ; Raghavender KOSGI ; Marlon P MARTINEZ ; Donald P EVENSON ; Daniel Suslik ZYLBERSZTEJN ; Matheus ROQUE ; Marcello COCUZZA ; Marcelo VIEIRA ; Assaf BEN-MEIR ; Raoul ORVIETO ; Eliahu LEVITAS ; Amir WISER ; Mohamed ARAFA ; Vineet MALHOTRA ; Sijo Joseph PAREKATTIL ; Haitham ELBARDISI ; Luiz CARVALHO ; Rima DADA ; Christophe SIFER ; Pankaj TALWAR ; Ahmet GUDELOGLU ; Ahmed M A MAHMOUD ; Khaled TERRAS ; Chadi YAZBECK ; Bojanic NEBOJSA ; Damayanthi DURAIRAJANAYAGAM ; Ajina MOUNIR ; Linda G KAHN ; Saradha BASKARAN ; Rishma Dhillon PAI ; Donatella PAOLI ; Kristian LEISEGANG ; Mohamed Reza MOEIN ; Sonia MALIK ; Onder YAMAN ; Luna SAMANTA ; Fouad BAYANE ; Sunil K JINDAL ; Muammer KENDIRCI ; Baris ALTAY ; Dragoljub PEROVIC ; Avi HARLEV
The World Journal of Men's Health 2019;37(3):296-312
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Antioxidants
;
Classification
;
Clinical Protocols
;
Diagnosis
;
DNA
;
Embryonic Structures
;
Female
;
Fertility
;
Health Expenditures
;
Humans
;
Infertility
;
Infertility, Male
;
Male
;
Membranes
;
Ovum
;
Oxidants
;
Oxidation-Reduction
;
Oxidative Stress
;
Reactive Oxygen Species
;
Reducing Agents
;
Reproductive Health
;
Semen
;
Spermatozoa
;
Subject Headings