1.Regulation of Cartilage Development and Diseases by Transcription Factors.
Riko NISHIMURA ; Kenji HATA ; Yoshifumi TAKAHATA ; Tomohiko MURAKAMI ; Eriko NAKAMURA ; Hiroko YAGI
Journal of Bone Metabolism 2017;24(3):147-153
Genetic studies and molecular cloning approaches have been successfully used to identify several transcription factors that regulate the numerous stages of cartilage development. Sex-determining region Y (SRY)-box 9 (Sox9) is an essential transcription factor for the initial stage of cartilage development. Sox5 and Sox6 play an important role in the chondrogenic action of Sox9, presumably by defining its cartilage specificity. Several transcription factors have been identified as transcriptional partners for Sox9 during cartilage development. Runt-related transcription factor 2 (Runx2) and Runx3 are necessary for hypertrophy of chondrocytes. CCAAT/enhancer-binding protein β (C/EBPβ) and activating transcription factor 4 (ATF4) function as co-activators for Runx2 during hypertrophy of chondrocytes. In addition, myocyte-enhancer factor 2C (Mef2C) is required for initiation of chondrocyte hypertrophy, presumably by functioning upstream of Runx2. Importantly, the pathogenic roles of several transcription factors in osteoarthritis have been demonstrated based on the similarity of pathological phenomena seen in osteoarthritis with chondrocyte hypertrophy. We discuss the importance of investigating cellular and molecular properties of articular chondrocytes and degradation mechanisms in osteoarthritis, one of the most common cartilage diseases.
Activating Transcription Factor 4
;
Cartilage Diseases
;
Cartilage*
;
Chondrocytes
;
Cloning, Molecular
;
Hypertrophy
;
Osteoarthritis
;
Sensitivity and Specificity
;
Transcription Factors*
2.Transcriptional Network Controlling Endochondral Ossification.
Kenji HATA ; Yoshifumi TAKAHATA ; Tomohiko MURAKAMI ; Riko NISHIMURA
Journal of Bone Metabolism 2017;24(2):75-82
Endochondral ossification is the fundamental process of skeletal development in vertebrates. Chondrocytes undergo sequential steps of differentiation, including mesenchymal condensation, proliferation, hypertrophy, and mineralization. These steps, which are required for the morphological and functional changes in differentiating chondrocytes, are strictly regulated by a complex transcriptional network. Biochemical and mice genetic studies identified chondrogenic transcription factors critical for endochondral ossification. The transcription factor sex-determining region Y (SRY)-box 9 (Sox9) is essential for early chondrogenesis, and impaired Sox9 function causes severe chondrodysplasia in humans and mice. In addition, recent genome-wide chromatin immunoprecipitation-sequencing studies revealed the precise regulatory mechanism of Sox9 during early chondrogenesis. Runt-related transcription factor 2 promotes chondrocyte hypertrophy and terminal differentiation. Interestingly, endoplasmic reticulum (ER) stress-related transcription factors have recently emerged as novel regulators of chondrocyte differentiation. Here we review the transcriptional mechanisms that regulate endochondral ossification, with a focus on Sox9.
Animals
;
Chondrocytes
;
Chondrogenesis
;
Chromatin
;
Endoplasmic Reticulum
;
Gene Regulatory Networks*
;
Humans
;
Hypertrophy
;
Mice
;
Miners
;
Osteogenesis
;
SOX9 Transcription Factor
;
Transcription Factors
;
Vertebrates