1.Effect of ribosome engineering on butenyl-spinosyns synthesis of Saccharopolyspora pogona.
Lin'gen LUO ; Yan YANG ; Hui WEI ; Jie RANG ; Qiong TANG ; Shengbiao HU ; Yunjun SUN ; Ziquan YU ; Xuezhi DING ; Liqiu XIA
Chinese Journal of Biotechnology 2016;32(2):259-263
Through introducing mutations into ribosomes by obtaining spontaneous drug resistance of microorganisms, ribosome engineering technology is an effective approach to develop mutant strains that overproduce secondary metabolites. In this study, ribosome engineering was used to improve the yield of butenyl-spinosyns produced by Saccharopolyspora pogona by screening streptomycin resistant mutants. The yields of butenyl-spinosyns were then analyzed and compared with the parent strain. Among the mutants, S13 displayed the greatest increase in the yield of butenyl-spinosyns, which was 1.79 fold higher than that in the parent strain. Further analysis of the metabolite profile of S13 by mass spectrometry lead to the discovery of Spinosyn α1, which was absent from the parent strain. DNA sequencing showed that there existed two point mutations in the conserved regions of rpsL gene which encodes ribosomal protein S12 in S13. The mutations occurred a C to A and a C to T transversion mutations occurred at nucleotide pair 314 and 320 respectively, which resulted in the mutations of Proline (105) to Gultamine and Alanine (107) to Valine. It also demonstrated that S13 exhibited genetic stability even after five passages.
Genetic Engineering
;
Macrolides
;
metabolism
;
Point Mutation
;
Ribosomal Proteins
;
genetics
;
Ribosomes
;
metabolism
;
Saccharopolyspora
;
metabolism
2.The connection between tumor and ubiquitin-ribosomal protein S27a, ubiquitin and ribosomal protein.
Chinese Journal of Biotechnology 2007;23(6):982-988
Ubiquitin-ribosomal protein S27a(UBRPS27a) is a fusion protein of Ubiquitin and ribosomal protein. The N-terminal is ubiquitin and C-termina is ribosomal protein S27a with a high conservative zinc finger domain of the C2-C2 type. When it was expressed in eukaryotes,The intact fusion protein were rapidly processed to free ubiquitin monomer and ribosomal protein S27a (RPS27a). Ubiquitin degradated proteins particularly and selectively in cell and RPS27a is indispensable for translation. This multifunctional ribosomal protein is expressed at high levels in a wide variety of actively proliferating cells and tumor tissues and is a representative characteristic of various tumor cells. In our preliminary study of this protein in the silkworm,RPS27a also be found express highly in actively proliferating cells. The precise functional role of each ribosomal protein is largely unknown and many ribosomal proteins have extraribosomal functions apart from the particle. In this article, we review the recent research on the connection between tumor and this fusion protein, Ubiquitin-Proteasome Pathway and ribosomal protein. These research may indicate the origin and development of tumor, provide the basis for clinical diagnosis of cancer and the novel therapeutic targets for the treatment of malignant tumors.
Animals
;
Biomarkers, Tumor
;
Cloning, Molecular
;
Humans
;
Neoplasms
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
metabolism
;
Ribosomal Proteins
;
biosynthesis
;
genetics
;
Ubiquitin
;
biosynthesis
;
genetics
3.Ionizing Radiation-Induced RPL23a Reduction Regulates Apoptosis
Yu Xuan HE ; Yi Xiao GUO ; Yong ZHANG ; Jun Jie HU ; Wei Tao DONG ; Xiang Hong DU ; Xing Xu ZHAO
Biomedical and Environmental Sciences 2021;34(10):789-802
Objective:
The expression patterns of ribosomal large subunit protein 23a (RPL23a) in mouse testes and GC-1 cells were analyzed to investigate the potential relationship between RPL23a expression and spermatogonia apoptosis upon exposure to X-ray.
Methods:
Male mice and GC-1 cells were irradiated with X-ray, terminal dUTP nick end-labelling (TUNEL) was performed to detect apoptotic spermatogonia
Results:
Ionizing radiation (IR) increased spermatogonia apoptosis, the expression of RPL11, MDM2 and p53, and decreased RPL23a expression in mice spermatogonia
Conclusion
These results suggested that IR reduced RPL23a expression, leading to weakened the RPL23a-RPL11 interactions, which may have activated p53, resulting in spermatogonia apoptosis. These results provide insights into environmental and clinical risks of radiotherapy following exposure to IR in male fertility. The graphical abstract was available in the web of www.besjournal.com.
Animals
;
Apoptosis/genetics*
;
Gene Expression Regulation
;
Male
;
Mice
;
Ribosomal Proteins/metabolism*
;
Signal Transduction
;
Spermatogonia/radiation effects*
4.Knockout of ribosomal genes bS22 and bL37 increases the sensitivity of mycobacteria to antibiotics.
Chan SHAN ; Qianwen YUE ; Xiaoming DING
Chinese Journal of Biotechnology 2022;38(3):1061-1073
In recent years, two novel proteins in the ribosomes of mycobacteria have been discovered by cryo-electron microscopy. The protein bS22 is located near the decoding center of the 30S subunit, and the protein bL37 is located near the peptidyl transferase center of the 50S subunit. Since these two proteins bind to conserved regions of the ribosome targeted by antibiotics, it is speculated that they might affect the binding of related drugs to these targets. Therefore, we knocked out the genes encoding these two proteins in wild-type Mycolicibacterium smegmatis mc2155 through homologous recombination, and then determined the growth curves of these mutants and their sensitivity to related antibiotics. The results showed that compared with the wild-type strain, the growth rate of these two mutants did not change significantly. However, mutant ΔbS22 showed increased sensitivity to capreomycin, kanamycin, amikacin, streptomycin, gentamicin, paromomycin, and hygromycin B, while mutant ΔbL37 showed increased sensitivity to linezolid. These changes in antibiotics sensitivity were restored by gene complementation. This study hints at the possibility of using ribosomal proteins bS22 and bL37 as targets for drug design.
Anti-Bacterial Agents/pharmacology*
;
Cryoelectron Microscopy
;
Mycobacterium/genetics*
;
Ribosomal Proteins/genetics*
;
Ribosomes/metabolism*
5.Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.
Zhixiu YANG ; Qiang GUO ; Simon GOTO ; Yuling CHEN ; Ningning LI ; Kaige YAN ; Yixiao ZHANG ; Akira MUTO ; Haiteng DENG ; Hyouta HIMENO ; Jianlin LEI ; Ning GAO
Protein & Cell 2014;5(5):394-407
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.
Cryoelectron Microscopy
;
Escherichia coli
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
GTP Phosphohydrolases
;
genetics
;
metabolism
;
Mass Spectrometry
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
RNA, Ribosomal
;
analysis
;
metabolism
;
Ribosomal Proteins
;
chemistry
;
genetics
;
metabolism
;
Ribosome Subunits, Small, Bacterial
;
chemistry
;
metabolism
;
ultrastructure
;
Salts
;
chemistry
6.Ribosomal Protein S9 Expression in Multiple Myeloma and Its Effect on Cell Biological Function.
Kun Peng SONG ; Peng SHU ; Ju Lei MA ; Bing WANG ; Bo CHEN
Acta Academiae Medicinae Sinicae 2019;41(2):175-182
Objective To identify the expression of ribosomal protein S9(RPS9)in multiple myeloma(MM)and explore its effect on the biological characteristics of myeloma cells and the corresponding mechanisms. Methods Bone marrow mononuclear cells were harvested in 10 healthy volunteers(CON group)and bone marrow CD138 +cells from 30 MM patients(CD138+group).Quantitative polymerase chain reaction(qPCR)was performed to detect RPS9 expression at mRNA level.In three cases from CON group and 11 cases from CD138+group,Western blot was performed to detect RPS9 at protein level.GSE19784 dataset was employed to detect the relationships of RPS9 expression with the overall survival rate,nuclear factor-κB(NF-κB),small ubiquitin-like modifier(SUMO),and ubiquitin pathway.After the RPS9 knock-down vector was constructed,flow cytometry was performed to detect the infection efficiency and qPCR and Western blot to detect the knock-down efficiency.RPMI8226 was divided into CON group and RPS9-short hairpin RNA(shRNA)group,in which annexin V allophycocyanin/propidium iodide(PI)double staining was performed to detect the change of apoptosis,CCK8 to detect the proliferation change,and PI staining to detect cell cycle change.After sentrin-specific protease 1(SENP1)overexpression vector was constructed,Western blot was performed to detect the phosphorylation of P65 and inhibitory subunit-κBα(IκBα)from NF-κB pathway in CON,RPS9-shRNA,and RPS9-shRNA-SENP1 cells;in addition,annexin V/PI double staining was also performed to detect the apoptosis in these three cells. Results The relative expression of RPS9 in CON group and CD138+group was(1.00±0.12)and(5.45±0.71),respectively(t=4.291,P=0.0036).Western blot showed RPS9 expression was high in most myeloma CD138+cells.The high expression of RPS9 was associated with both extramedullary invasion and overall survival in GSE19784 dataset.After RPMI8226 was infected with CON or RPS9-shRNA lentivirus for 48 hours,flow cytometry confirmed that the infection efficiencies were above 90% in both groups.qPCR and Western blot confirmed that RPS9 expression was inhibited at both mRNA and protein levels.After RPMI8226 CON and RPS9-shRNA infected with virus for 48 hours,the proportion of annexin V-positive cells in CON and RPS9-shRNA cells was(3.47±0.37)% and(18.60±64.00)%(t=9.015,P=0.0008).The proliferation index significantly differed between CON group and RPS9-shRNA group at 72 hours(t=6.846,P=0.0024).When CON and RPS9-shRNA were infected with virus for 48 hours,the proportion of G2 phase cells was(29.28±3.42)% and(10.43±1.43)%,respectively(t=9.329,P=0.0007).The RPS9 expression was positively correlated with SENP1 in GSE19784 dataset and negatively correlated with IκBα coding gene NFKBIA.Western blot further confirmed that RPS9 knockdown inhibited the expression of SENP1,inhibited the phosphorylation of NF-κB subunit P65 and inhibitor IκBα,and promoted the expression of IκBα.Overexpression of SENP1 not only impeded this effect but also reduced RPS9-induced apoptosis. Conclusions RPS9 is highly expressed in MM CD138+cells and is associated with overall survival and extramedullary infiltration.Inhibition of RPS9 can promote apoptosis,cell cycle arrest,and proliferation of myeloma cells.RPS9 can affect the activation of NF-κB pathway and cell apoptosis through SENP1,suggesting that SENP1 may be a key factor in the biological effect of RPS9.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Cysteine Endopeptidases
;
metabolism
;
Humans
;
Multiple Myeloma
;
metabolism
;
Ribosomal Proteins
;
metabolism
;
Signal Transduction
8.The expression of mTOR and its substrates in oral squamous cell carcinoma.
Yi LIU ; Ming-liang YANG ; Yang ZHANG ; Bing-zhi YU
West China Journal of Stomatology 2004;22(4):331-333
OBJECTIVEThe aim of this study was to observe the expression of mTOR (mammalian target of rapamycin) and its substrates in oral squamous cell carcinoma.
METHODSmTOR and its substrates alpha1, alpha2, beta1, beta2 isoforms of p70 S6 kinase (p70S6k) and 4EBP1 were examined by means of RT-PCR, Western-blot test.
RESULTSThe result of RT-PCR showed that in poorly differentiated tissue, the expression level of mTOR and its substrates alpha1, alpha2, beta1, beta2 isoforms of p70S6k increased obviously, while that of 4EBP1 decreased, while that in well differentiated tissue was second to it, the normal oral tissue was the last. The expression of Western-blot was the same as the RT-PCR.
CONCLUSIONThe expression of mTOR and its substrates differs in different types of oral squamous cell carcinoma. The result suggests that mTOR, p70S6K and 4EBP1 might play important roles in oral squamous cell carcinoma. It may be an important target protein to treat tumor in the future.
Adaptor Proteins, Signal Transducing ; metabolism ; Carcinoma, Squamous Cell ; metabolism ; Humans ; Mouth Neoplasms ; metabolism ; Phosphoproteins ; metabolism ; Ribosomal Protein S6 Kinases, 70-kDa ; metabolism ; TOR Serine-Threonine Kinases ; metabolism
9.Localization of polypeptides release factors and ribosome protein L11 in Euplotes octocarinatus.
Baofeng CHAI ; Na LI ; Jingtao WANG ; Quan SHEN ; Zhiyun ZHANG ; Aihua LIANG
Chinese Journal of Biotechnology 2010;26(2):237-243
Protozoan ciliates are a group of unicellular eukaryotes. The special characteristics of stop codons usage in termination of protein biosynthesis in ciliates cells makes them an ideal model to study the mechanism of stop codon recognition of polypeptides release factors. To localize the functional positions of biomolecules in ciliates cell, we constructed a macronuclear artificial chromosome containing a gene encoding red fluorescence protein (EoMAC_R) based on the structural characteristics of ciliates chromosome. Three factors, L11, eRF1a, and eRF3 that are involved in termination process of protein synthesis were colocalized in Euplotes octocarinatus cells by using novel EoMAC_R and the previously constructed EoMAC_G. The results indicated that protein synthesis mainly occurred inside the "C" shape macronucleus, suggesting that EoMAC could be a useful tool for localizing biomolecules in ciliates cell.
Chromosomes, Artificial
;
Codon, Terminator
;
metabolism
;
Euplotes
;
chemistry
;
Peptide Termination Factors
;
analysis
;
genetics
;
metabolism
;
Peptides
;
metabolism
;
Protein Biosynthesis
;
genetics
;
Protozoan Proteins
;
analysis
;
genetics
;
Ribosomal Proteins
;
analysis
;
genetics
10.LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells.
Zhen SUN ; Hua YU ; Jing ZHAO ; Tianyu TAN ; Hongru PAN ; Yuqing ZHU ; Lang CHEN ; Cheng ZHANG ; Li ZHANG ; Anhua LEI ; Yuyan XU ; Xianju BI ; Xin HUANG ; Bo GAO ; Longfei WANG ; Cristina CORREIA ; Ming CHEN ; Qiming SUN ; Yu FENG ; Li SHEN ; Hao WU ; Jianlong WANG ; Xiaohua SHEN ; George Q DALEY ; Hu LI ; Jin ZHANG
Protein & Cell 2022;13(7):490-512
LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.
Animals
;
Cell Differentiation
;
Embryo, Mammalian/metabolism*
;
Embryonic Development
;
Mice
;
Pluripotent Stem Cells/metabolism*
;
RNA, Messenger/genetics*
;
RNA, Ribosomal
;
RNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Zygote/metabolism*