1.Cloning, structure analysis and functional verification of MYB10 in Ribes L.
Qiuying FENG ; Xue LIU ; Linlin YANG ; Zeyuan FU ; Qijiang XU
Chinese Journal of Biotechnology 2022;38(1):275-286
This study aims to investigate the molecular mechanism of the transcription factor MYB10, which is involved in anthocyanin biosynthesis, in different colors of Ribes L. fruitification. Rapid amplification of cDNA ends (RACE) was used to clone the MYB10 genes from Ribes nigrum L. (RnMYB10), Ribes rubrum L. (RrMYB10), and Ribes album L. (RaMYB10), respectively. Phylogenetic analysis showed that RnMYB10 and RrMYB10 were evolutionarily homologous. Real-time quantitative PCR (RT-qPCR) showed that the expression of MYB10 in the fruits of Ribes nigrum L. was higher than that of Ribes rubrum L. and much higher than that of Ribes album L. The expression of RnMYB10 and RrMYB10 increased at first and then decreased as the fruit diameter increased and the fruit color deepened (the maximum expression level was reached at 75% of the fruit color change), while the expression level of RaMYB10 was very low. Overexpression of RnMYB10 and RrMYB10 in Arabidopsis thaliana resulted in purple petioles and leaves, whereas overexpression of RaMYB10 resulted in no significant color changes. This indicates that MYB10 gene plays an important role in the coloration of Ribes L. fruit.
Anthocyanins
;
Cloning, Molecular
;
Fruit
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Proteins/metabolism*
;
Ribes/genetics*
2.Anti-aging properties of Ribes fasciculatum in Caenorhabditis elegans.
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):335-342
The present study investigated the effects and underlying mechanism of ethylacetate fraction of Ribes fasciculatum (ERF) on the lifespan and stress tolerance using a Caenorhabditis elegans model. The longevity activity of ERF was determined by lifespan assay under normal culture condition. The survival rate of nematodes under various stress conditions was assessed to validate the effects of ERF on the stress tolerance. To determine the antioxidant potential of ERF, the superoxide dismutase (SOD) activities and intracellular reactive oxygen species (ROS) levels were investigated. The ERF-mediated change in SOD-3 expression was examined using GFP-expressing transgenic strain. The effects of ERF on the aging-related factors were investigated by reproduction assay and pharyngeal pumping assay. The intestinal lipofuscin levels of aged nematodes were also measured. The mechanistic studies were performed using selected mutant strains. Our results indicated that ERF showed potent lifespan extension effects on the wild-type nematode under both normal and various stress conditions. The ERF treatment also enhanced the activity and expression of superoxide dismutase (SOD) and attenuated the intracellular ROS levels. Moreover, ERF-fed nematodes showed decreased lipofuscin accumulation, indicating ERF might affect age-associated changes in C. elegans. The results of mechanistic studies indicated that there was no significant lifespan extension in ERF-treated daf-2, age-1, sir-2.1, and daf-16 null mutants, suggesting that they were involved in ERF-mediated lifespan regulation. In conclusion, R. fasciculatum confers increased longevity and stress resistance in C. elegans via SIR-2.1-mediated DAF-16 activation, dependent on the insulin/IGF signaling pathway.
Aging
;
drug effects
;
genetics
;
metabolism
;
Animals
;
Caenorhabditis elegans
;
drug effects
;
genetics
;
growth & development
;
metabolism
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Humans
;
Longevity
;
drug effects
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
pharmacology
;
Reactive Oxygen Species
;
metabolism
;
Ribes
;
chemistry
;
Signal Transduction
;
drug effects