1.Alu and L1 Retroelements Are Correlated with the Tissue Extent and Peak Rate of Gene Expression, Respectively.
Tae Min KIM ; Yu Chae JUNG ; Mun Gan RHYU
Journal of Korean Medical Science 2004;19(6):783-792
We exploited the serial analysis of gene expression (SAGE) libraries and human genome database in silico to correlate the breadth of expression (BOE; housekeep-ing versus tissue-specific genes) and peak rate of expression (PRE; high versus low expressed genes) with the density distribution of the retroelements. The BOE status is linearly associated with the density of the sense Alus along the 100 kb nucleotides region upstream of a gene, whereas the PRE status is inversely correlated with the density of antisense L1s within a gene and in the up- and downstream regions of the 0-10 kb nucleotides. The radial distance of intranuclear position, which is known to serve as the global domain for transcription regulation, is reciprocally correlated with the fractions of Alu (toward the nuclear center) and L1 (toward the nuclear edge) elements in each chromosome. We propose that the BOE and PRE statuses are related to the reciprocal distribution of Alu and L1 elements that formulate local and global expression domains.
Alu Elements/*genetics
;
Chromosome Mapping/*methods
;
Comparative Study
;
Databases, Genetic
;
Gene Expression Profiling/*methods
;
Gene Expression Regulation/*genetics
;
Genome, Human
;
Humans
;
Long Interspersed Nucleotide Elements/*genetics
;
Retroelements/genetics
;
Sequence Analysis, DNA/*methods
;
Statistics
;
Tissue Distribution
2.Transposable Elements: No More 'Junk DNA'.
Yun Ji KIM ; Jungnam LEE ; Kyudong HAN
Genomics & Informatics 2012;10(4):226-233
Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.
Alu Elements
;
Coat Protein Complex I
;
DNA
;
DNA Transposable Elements
;
Endogenous Retroviruses
;
Genetic Variation
;
Genome
;
Humans
;
Long Interspersed Nucleotide Elements
;
Pan troglodytes
;
Primates
;
Recombination, Genetic
;
Tromethamine
3.Structural Variation of Alu Element and Human Disease.
Songmi KIM ; Chun Sung CHO ; Kyudong HAN ; Jungnam LEE
Genomics & Informatics 2016;14(3):70-77
Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.
Alu Elements*
;
DNA Transposable Elements
;
Genetic Diseases, Inborn
;
Genome
;
Genome, Human
;
Genomic Instability
;
Humans*
;
Nervous System Diseases
;
Primates
;
Recombination, Genetic
;
Retroelements
4.Genomic Features of Retroelements and Implications for Human Disease.
Genomics & Informatics 2005;3(4):133-141
Most of the endogenous retroviral genes integrated into the primate genome after the split of New World monkeys in the Oligocene era, approximately 33 million years ago. Because they can change the structure of adjacent genes and move between and within chromosomes they may play important roles in evolutionas well as in many kinds of disease and the creation of genetic polymorphism. Comparative analysis of HERVs (human endogenous retroviruses) and their LTR (long terminal repeat) elements in the primate genomes will help us to understand the possible impact of HERV elements in the evolution and phylogeny of primates. For example, HERV-K LTR and SINE-R elements have been identified that have been subject to recent change in the course of primate evolution. They are specific elements to the human genome and could be related to biological function. The HERV-M element is related to the superfamily of HERV-K and is integrated into the periphilin gene as the truncated form, 5'LTR-gag-pol-3'LTR. PCR and RT-PCR approaches indicated that the insertion of various retrotransposable elements in a common ancestor genome may make different transcript variants in different primate species. Examination of the HERV-W elementrevealed that env fragments were detected on human chromosomes 1, 3-7, 12, 14, 17, 20, and X, whilst the pol fragments were detected on human chromosomes 2-8, 10-15, 20, 21, X, and Y. Bioinformatic blast search showed that almost full-length of the HERV-W family was identified on human chromosomes 1-8, 11-15, 17, 18, 21, and X. Expression analysis of HERV-W genes (gag, pol, and env) in human tissues by RT-PCR indicated that gag and pol were expressed in specific tissues, whilst env was constituitively expressed in all tissues examined. DNA sequence based phylogenetic analysis indicated that the gag, pol and env genes have evolved independently during primate evolution. It will thus be of considerable interest to expand the current HERV gene information of various primates and disease tissues.
Base Sequence
;
Chromosomes, Human
;
Endogenous Retroviruses
;
Genes, env
;
Genome
;
Genome, Human
;
Humans*
;
Phylogeny
;
Platyrrhini
;
Polymerase Chain Reaction
;
Polymorphism, Genetic
;
Primates
;
Retroelements*
;
Zidovudine
5.Identification and expression pattern analysis of a Moso Bamboo LTR retrotransposon.
Feixiang PAN ; Dingqin TANG ; Mingbing ZHOU
Chinese Journal of Biotechnology 2019;35(3):445-457
To develop more active LTR retrotransposons in Phyllostachys edulis, a Ph. edulis LTR retrotransposon (Ph-LTR2) was identified, and the expression pattern of the transposon under stress was systematically analyzed. Ph-LTR2 transposon is 6 030 bp in length and belongs to the Reina subfamily in the Ty3-Gypsy family. With the similarity of 96.41% of both LTR sequences, the Ph-LTR2 transposon inserted the moso bamboo genome about 61.92 thousand years ago. There are 5 copies identified in the genome. The Ph-LTR2 transposon domain includes GAG (gag protein) protein domain, PR (Proteases) protein domain, RT (Reverse transcriptase) protein domain, RH (Ribonuclease H) protein domain, INT (Integrase) protein domain and CHR (Chromatin organization modifier) protein domain. The expression patterns of INT, RT and RH were detected by real-time quantitative PCR. The three domains were found to have specific expression patterns at different tissues of the bamboo. Under the conditions of low/high temperature, methylation inhibitors treatments, irradiation and high salt stress, transcription levels of the three domains of the Ph-LTR2 transposon increased with different degrees. Specifically, after treatment with low/high temperature and methylation inhibitors, the transcription level was up-regulated; after low dose radiation treatment and low concentration of salt solution treatment, the transcription level was also increased, but the expression level decreased with increasing dose of radiation and concentration of salt solution. These results indicate that the expression pattern of the Ph-LTR2 transposon responds to the changes of the external environment, but the exact mechanism is not yet known. The results of this study laid a certain theoretical foundation for the development of the genetic tool based on Ph-LTR2 transposons.
Genome
;
Phylogeny
;
Poaceae
;
Retroelements
6.PrimateDB: Development of Primate Genome DB and Web Service.
Taeha WOO ; Gwangsik SHIN ; Taewook KANG ; Byoungchul KIM ; Jungmin SEO ; Sang Soo KIM ; Chang Bae KIM
Genomics & Informatics 2005;3(2):73-76
The comparative analysis of the human and primate genomes including the chimpanzee can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other vertebrates. PrimateDB is an open depository server that provides primate genome information for the comparative genome research. The database also provides an easy access to variable information within/between the primate genomes and supports analyzed information, such as annotation and retroelements and phylogeny. The comparative analyses of more primate genomes are also being included as the long-term objective.
Genome*
;
Genome, Human
;
Humans
;
Pan troglodytes
;
Phylogeny
;
Primates*
;
Retroelements
;
Vertebrates
7.Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome.
Genomics & Informatics 2013;11(4):230-238
Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.
Biological Evolution
;
Genome*
;
Genome, Human
;
Humans*
;
Neanderthals*
;
Pseudogenes
;
Retroelements
8.Plant active LTR retrotransposons: a review.
Chinese Journal of Biotechnology 2016;32(4):409-429
Long terminal repeat (LTR) retrotransposons are mobile DNA sequences that ubiquitously exist in eukaryotic genomes. They replicate themselves in the genome by copy-paste mechanism with RNA as medium. In higher plants, many active LTR retrotransposons have been applied to analyze molecular marker technology, genetic tagging, insertion mutation and gene function. Here, we systematically review the characteristics of plant active LTR retrotransposons, including their structures, copy numbers and distributions. We further analyzed the gag (group-specific antigen) and pol (polymerase) sequence features of different plants active LTR retrotransposons and the distribution patterns of the cis-acting elements in LTR regions. The results show that autonomous active LTR retrotransposons must contain LTR regions and code Gag, Pr, Int, Rt, Rh proteins. Both LTR regions are highly homologous with each other and contain many cis-regulatory elements; RVT and RNase_H1_RT domain are essential for Rt and Rh protein respectively. These results provide the basis for subsequent identification of plant active LTR retrotransposons and their functional analysis.
Genome, Plant
;
Mutagenesis, Insertional
;
Plants
;
genetics
;
Retroelements
;
Terminal Repeat Sequences
9.Chromosomal Losses are Associated with Hypomethylation of the Gene-Control Regions in the Stomach with a Low Number of Active Genes.
Yu Chae JUNG ; Seung Jin HONG ; Young Ho KIM ; Sung Ja KIM ; Seok Jin KANG ; Sang Wook CHOI ; Mun Gan RHYU
Journal of Korean Medical Science 2008;23(6):1068-1089
Transitional-CpG methylation between unmethylated promoters and nearby methylated retroelements plays a role in the establishment of tissue-specific transcription. This study examined whether chromosomal losses reducing the active genes in cancers can change transitional-CpG methylation and the transcription activity in a cancer-type-dependent manner. The transitional-CpG sites at the CpG-island margins of nine genes and the non-island-CpG sites round the transcription start sites of six genes lacking CpG islands were examined by methylation-specific polymerase chain reaction (PCR) analysis. The number of active genes in normal and cancerous tissues of the stomach, colon, breast, and nasopharynx were analyzed using the public data in silico. The CpG-island margins and non-island CpG sites tended to be hypermethylated and hypomethylated in all cancer types, respectively. The CpG-island margins were hypermethylated and a low number of genes were active in the normal stomach compared with other normal tissues. In gastric cancers, the CpG-island margins and non-island-CpG sites were hypomethylated in association with high-level chromosomal losses, and the number of active genes increased. Colon, breast, and nasopharyngeal cancers showed no significant association between the chromosomal losses and methylation changes. These findings suggest that chromosomal losses in gastric cancers are associated with the hypomethylation of the gene-control regions and the increased number of active genes.
Alu Elements/genetics
;
*Chromosome Deletion
;
CpG Islands/*genetics
;
*DNA Methylation
;
DNA, Neoplasm/chemistry/isolation & purification
;
Gene Expression Profiling
;
*Genes, Neoplasm
;
Humans
;
Long Interspersed Nucleotide Elements/genetics
;
Polymerase Chain Reaction
;
*Promoter Regions, Genetic
;
Stomach Neoplasms/*genetics
10.Compiling Multicopy Single-Stranded DNA Sequences from Bacterial Genome Sequences.
Wonseok YOO ; Dongbin LIM ; Sangsoo KIM
Genomics & Informatics 2016;14(1):29-33
A retron is a bacterial retroelement that encodes an RNA gene and a reverse transcriptase (RT). The former, once transcribed, works as a template primer for reverse transcription by the latter. The resulting DNA is covalently linked to the upstream part of the RNA; this chimera is called multicopy single-stranded DNA (msDNA), which is extrachromosomal DNA found in many bacterial species. Based on the conserved features in the eight known msDNA sequences, we developed a detection method and applied it to scan National Center for Biotechnology Information (NCBI) RefSeq bacterial genome sequences. Among 16,844 bacterial sequences possessing a retron-type RT domain, we identified 48 unique types of msDNA. Currently, the biological role of msDNA is not well understood. Our work will be a useful tool in studying the distribution, evolution, and physiological role of msDNA.
Biotechnology
;
Chimera
;
DNA
;
DNA, Single-Stranded*
;
Genome, Bacterial*
;
Retroelements
;
Reverse Transcription
;
RNA
;
RNA-Directed DNA Polymerase