2.A differential gene expression profiles by cDNA microarrays in endometrioid endometrial carcinoma: a preliminary study.
Min Ji CHUNG ; Eun Jung CHUNG ; Taek Hoo LEE ; Young Lae CHO ; Il Soo PARK ; Yoon Soon LEE
Korean Journal of Gynecologic Oncology 2007;18(3):219-226
OBJECTIVE: Endometrial carcinoma is the most common gynecological malignant disease in industrialized countries. However, the molecular bases for endometrial tumoriogenesis are not clearly elucidated. Our hypothesis is that there may be some difference in gene expression patterns between normal endometrium and endometrial cancer lesion. In this study, we analyzed the difference of gene expression profile with cDNA microarray. METHODS: Normal endometrial tissues and cancer lesions were gathered from three patient with endometrioid endometrial cancer. cDNA microarray technique (KNU 4.8K chip) was applied to screen the different gene expression profiles. RESULTS: Many genes such as interleukin-1 receptor-associated kinase 1 (IRAK1), bifunctional apoptosis regulator (BFAR), paraneoplastic antigen MA2 (PNMA2), zinc finger protein 257 (ZNF257), ras homolog gene family, member F (in filopodia) (ARHF), cell division cycle 27 (CDC27) were over-expressed in the endometrial cancer tissue. The genes were down-regulated in the endometrial cancer samples included fibronectin 1 (FN1), meiotic checkpoint regulator (MCPR), transforming growth factor beta-stimulated protein TSC-22 (TSC22), programmed cell death 4 (neoplastic transformation inhibitor) (PDCD4), transcript variant 2, matrix metalloproteinase 2 (MMP2), insulin-like growth factor binding protein 4 (IGFBP4), retinoblastoma binding protein 7 (RBBP7), insulin-like growth factor binding protein 3 (IGFBP3), downregulated in ovarian cancer 1 (DOC1). CONCLUSION: The result of this analysis supports the hypothesis that the endometrial cancer tissue has distinct gene expression profile from normal endometium. But, the vaildation of gene expression with RT-PCR and the further study are needed.
Apoptosis
;
Cell Cycle
;
Cell Death
;
Developed Countries
;
DNA, Complementary*
;
Endometrial Neoplasms*
;
Endometrium
;
Female
;
Fibronectins
;
Gene Expression*
;
Humans
;
Insulin-Like Growth Factor Binding Protein 3
;
Insulin-Like Growth Factor Binding Protein 4
;
Interleukin-1 Receptor-Associated Kinases
;
Matrix Metalloproteinase 2
;
Oligonucleotide Array Sequence Analysis*
;
Ovarian Neoplasms
;
Retinoblastoma-Binding Protein 7
;
Transcriptome*
;
Transforming Growth Factors
;
Zinc Fingers
3.Effect of RbAp48 knockdown on migration and invasion of human cervical cancer cell line MS751 in vitro.
Jingjing ZHONG ; Xurui YANG ; Meiqing MAI ; Dandan WANG ; Lin LV ; Jinjun RAO
Journal of Southern Medical University 2015;35(11):1564-1569
OBJECTIVETo investigate the effect of RbAp48 knockdown on the migration and invasion of human cervical cancer cells and explore the mechanism.
METHODSA small interference RNA (siRNA) was used to knock down the expression of RbAp48 in MS751 cells. The changes in cell migration and invasion were evaluated using wound healing assay and Transwell assay, respectively, and the expressions of RbAp48, vimentin, N-cadherin, E-cadherin, Snail, Twist, MMP-2 and TIMP-2 were determined with Western blotting.
RESULTSAfter siRNA-mediated RbAp48 knockdown, MS751 cells showed a significantly reduced expression of RbAp48 with significantly suppressed cell migration and invasion (P<0.01). RbAp48 knockdown induced obvious down-regulation of the expressions of interstitial cell phenotype proteins vimentin, N-cadherin, and MMP-2 and up-regulation of epithelial cell phenotype proteins E-cadherin and TIMP-2, suggesting the inhibition of epithelial- mesenchymal transition of the cells. The expressions of Snail and Twist were significantly down-regulated in the cells following RbAp48 knockdown.
CONCLUSIONKnockdown of RbAp48 can significantly inhibit epithelial-mesenchymal transition and suppress the migration and invasion of cervical cancer cell line MS751, the mechanism of which may involve the down-regulation of Snail and Twist expressions.
Antigens, CD ; metabolism ; Cadherins ; metabolism ; Cell Line, Tumor ; Cell Movement ; Down-Regulation ; Epithelial-Mesenchymal Transition ; Female ; Gene Knockdown Techniques ; Humans ; Matrix Metalloproteinase 2 ; metabolism ; Neoplasm Invasiveness ; Nuclear Proteins ; metabolism ; RNA, Small Interfering ; Retinoblastoma-Binding Protein 4 ; genetics ; Snail Family Transcription Factors ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism ; Transcription Factors ; metabolism ; Twist-Related Protein 1 ; metabolism ; Up-Regulation ; Uterine Cervical Neoplasms ; pathology ; Vimentin ; metabolism