1.Resveratrol Modulates Bone Mineral Density and Bone Mineral Content in A Rat Model of Male Hypogonadism.
Hussein F SAKR ; Boudaka AMMAR ; Amira ALKHARUSI ; I AL-LAWATI ; Mahmoud ALKHATEEB ; Basim H ELESAWY
Chinese journal of integrative medicine 2023;29(2):146-154
OBJECTIVE:
To determine whether resveratrol (Res) can correct osteoporosis induced in a rat model of male hypogonadism.
METHODS:
Thirty-two rats were randomly divided into 4 groups, 8 in each group; 1) a control sham group: underwent a similar surgical procedure for induction of orchiectomy (ORCD) without ligation of any arteries or veins or removal of the testis and epididymis; 2) a control + Res-treated group (Con+Res): underwent sham surgery similar to the control, but was then treated with Res, as described below; 3) an ORCD-induced group: bilateral ORCD surgery as described above, and 4) a ORCD+Res-treated group: bilateral ORCD surgery followed by Res treatment. Res treatment began 4 weeks after ORCD and continued for 12 weeks. After 12 weeks, bone mineral density (BMD) and bone mineral content (BMC) were measured in the tibia and femur of each rat's right hind leg. Blood levels of bone turnover indicators such as deoxypyridinoline (Dpd), N-telopeptide of type I collagen (NTX I), alkaline phosphatase (ALP), and osteocalcin (OC), as well as receptor activator of nuclear factor kappa B (RANK) and osteoprotegerin (OPG) were assessed.
RESULTS:
ORCD significantly decreased BMD (P<0.01) and significantly increased bone resorption, manifested by increased RANK. In addition, it inhibited serum levels of OPG and OC. Res treatment after ORCD effectively increased serum levels of bone formation markers such as OPG and OC, compared with testisectomized rats (P<0.05).
CONCLUSION
Res could ameliorate bone loss induced by male hypogonadism, possible via restoration of the normal balance between RANK and OPG.
Rats
;
Male
;
Animals
;
Bone Density
;
Resveratrol/pharmacology*
;
Osteoporosis
;
Osteoprotegerin/pharmacology*
;
Bone Remodeling
;
Hypogonadism
;
RANK Ligand/pharmacology*
2.Effect of resveratrol on PTEN expression and fibrosis of renal tubular epithelial cells in a high-glucose environment.
Lan SUN ; Xu-Xian WU ; Yu-Fen PENG
China Journal of Chinese Materia Medica 2021;46(18):4793-4799
This study explored the effects of resveratrol(Res) on the expression of phosphatase and tensin homolog deleted on chromosome ten(PTEN) and the fibrosis of rat renal tubular epithelial cells in a high-glucose environment and the possible mechanism underlying the fibrosis reduction. After the pretreatment of rat renal tubular epithelial cells(NRK-52 E) cultured in a high-glucose condition with Res or PTEN inhibitor SF1670, they were divided into several groups, i.e., normal glucose(NG), normal glucose + SF1670(NS), high glucose(HG), high glucose + SF1670(HS), high glucose + Res at different concentrations(5, 10, 25 μmol·L~(-1)). The expression and distribution of E-cadherin and α-SMA in renal tubular epithelial cells were observed by immunofluorescence cytochemistry. The protein expression levels of PTEN, E-cadherin, α-SMA, p-Akt~((Thr308)) and collagen Ⅳ were determined by Western blot. Real-time PCR was employed to detect the expression of PTEN mRNA. Compared with the NG group, the HG group witnessed the reduced expression of PTEN mRNA, PTEN protein and E-cadherin protein, but saw the increased expression of α-SMA, p-Akt~((Thr308)) and collagen Ⅳ proteins. Besides, with the increase in Res concentration, the expression levels of PTEN mRNA, PTEN protein and E-cadherin protein gradually increased, while those of α-SMA, collagen Ⅳ, p-Akt~((Thr308)) proteins gradually decreased in the Res groups, showing a dose-effect dependence, compared with the HG group. No distinct difference was found between the NS group and the NG group. The expression level of E-cadherin was even lower and those of α-SMA, p-Akt~((Thr308)), and collagen Ⅳ were higher in the HS group than in the HG group, with no marked difference shown in the two groups in terms of PTEN mRNA and protein. Although the PTEN inhibitor did not affect PTEN, the expression changes of the other proteins were opposite to the results after Res treatment and the fibrosis was aggravated, which suggested that SF1670 promoted the fibrosis by inhibiting PTEN, activating Akt and increasing the synthesis of collagen Ⅳ and other extracellular matrix. The results show that Res can antagonize the high glucose-mediated fibrosis of renal tubular epithelial cells. This may be achieved via the up-regulation of PTEN and the inhibition of PI3 K/Akt signaling pathway.
Animals
;
Epithelial Cells
;
Fibrosis
;
Glucose
;
PTEN Phosphohydrolase/genetics*
;
Rats
;
Resveratrol/pharmacology*
3.Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia.
Yao YAO ; Rui ZHOU ; Rui BAI ; Jing WANG ; Mengjiao TU ; Jingjing SHI ; Xiao HE ; Jinyun ZHOU ; Liu FENG ; Yuanxue GAO ; Fahuan SONG ; Feng LAN ; Xingguo LIU ; Mei TIAN ; Hong ZHANG
Frontiers of Medicine 2021;15(3):472-485
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Animals
;
Brain Ischemia/drug therapy*
;
Cell Differentiation
;
Hypoxia
;
Neurons
;
Rats
;
Resveratrol/pharmacology*
4.Inhibitory Effect of Resveratrol on the Proliferation of Multiple Myeloma Cells and the Underlying Mechanism.
Nan ZHOU ; Shu-Xing CAO ; Zhen-Zhen WANG ; Jian-Min LUO ; Xiao-Jun LIU ; Yin-Tao SHANG ; Lin YANG
Journal of Experimental Hematology 2023;31(4):1093-1099
OBJECTIVE:
To investigate the effect of resveratrol (RSV) on the proliferation of multiple myeloma (MM) cells and its molecular mechanism.
METHODS:
MM cells (MM1.S, RPMI-8226 and U266) were treated with different concentrations of RSV for 24-72 h. The effect of RSV on the proliferation of MM cells was detected by CCK-8 (cell counting kit-8) assay. RPMI-8226 cells were divided into RSV, miR-21 mimic, RSV+miR-21 mimic, miR-21 inhibitor and RSV+miR-21 inhibitor groups, and transfected with corresponding plasmids. The cell cycle distribution of each group was detected by flow cytometry with propidium iodide (PI) single staining. The cell apoptosis of each group was detected by AnnexinV-FITC/PE-PI double staining. The expression of miR-21 in MM cells treated with RSV and the expression of KLF5 mRNA in each group were detected by qRT-PCR. The expression of KLF5 protein in each group was detected by Western blot.
RESULTS:
RSV inhibited the proliferation and induced apoptosis of MM cells in a time- and dose-dependent manner. After the MM cells were treated with RSV, the number of cells in sub-G1 phase was increased, and that in G2/M phase was decreased. Moreover, RSV significantly downregulated the expression of miR-21 in MM cells, and the inhibitory effect of miR-21 mimic on KLF5 expression in MM cells was counteracted by RSV.
CONCLUSION
RSV may inhibit the proliferation and induce apoptosis of MM cells by inhibiting miR-21 and up-regulating KLF5 expression.
Humans
;
Resveratrol/pharmacology*
;
Multiple Myeloma/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
MicroRNAs/genetics*
5.Resveratrol inhibits Ca
Mikio MARUMO ; Kazumi EKAWA ; Ichiro WAKABAYASHI
Environmental Health and Preventive Medicine 2020;25(1):70-70
BACKGROUND:
Resveratrol has been shown to inhibit platelet aggregation. However, the mechanism for this action of resveratrol remains to be clarified. The purpose of this study was to elucidate the Ca
METHODS:
Ca
RESULTS:
Thapsigargin-induced Ca
CONCLUSIONS
The results suggest that resveratrol inhibits thrombin-induced platelet aggregation through decreasing Ca
Antioxidants/administration & dosage*
;
Calcium/physiology*
;
Humans
;
Platelet Aggregation/drug effects*
;
Platelet Aggregation Inhibitors/pharmacology*
;
Resveratrol/pharmacology*
;
Signal Transduction/drug effects*
7.Inhibit affection of resveratrol on the growth of Hep-2 cell line.
Yunchuan LI ; Yanwei XU ; Dan HUANG ; Linlin JIANG ; Kesen LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2007;21(24):1129-1131
OBJECTIVE:
To study the inhibitory effect of resveratrol on growth of human laryngeal cancer cell line, Hep-2.
METHOD:
Count cell number under microscope, MTT assay was used to determine the cell growth inhibitory rate. Soft agar colony forming experiment was performed to observe the proliferation ability, before or after resveratrol treatment.
RESULT:
Resveratrol was able to depress cell growth and inhibit cell proliferation.
CONCLUSION
Resveratrol strongly inhibit Hep-2 cell proliferation in a time- and dose-dependent manner.
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
Humans
;
Resveratrol
;
Stilbenes
;
pharmacology
8.Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease.
Yingyan FANG ; Zhenhong SU ; Wenxia SI ; Yuancheng LIU ; Jie LI ; Peng ZENG
Journal of Southern Medical University 2021;41(1):10-19
OBJECTIVE:
To investigate the therapeutic mechanism of resveratrol (RES) for Alzheimer's disease (AD) in light of network pharmacology.
METHODS:
We searched PubChem, BATMAN-TCM, Genecards, AD, TTD, String 11.0, AlzData, SwissTargetPrediction, Metascape and other databases for the therapeutic targets of RES and human AD-related targets. The intersection was determined using Venny 2.1 to obtain the therapeutic targets of RES for AD. The protein-protein interaction (PPI) network was constructed, the gene ontology (GO) was enriched and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) were analyzed. Cytoscape 3.7.1 software was used to construct a target-signaling pathway network of RES in the treatment of AD. Molecular docking verification was carried out on SwissDock (http://www.swissdock.ch/docking). We examined a 293Tau cell model of AD for changes in protein levels of pS396, pS199, Tau5, CDK5, glycogen synthase kinase 3β (GSK3β) and p-GSK3β in response to RES treatment using Western blotting.
RESULTS:
We obtained 182 targets of RES, 525 targets related to AD, and 36 targets of RES for AD treatment, among which 34.6% of the targets were protein-modifying enzymes, 27.7% were metabolite invertase, 13.8% were gene-specific transcriptional regulators, and 10.3% were transporters. The core key targets of RES in the treatment of AD included INS, APP, ESR1, MMP9, IGF1R, CACNA1C, MAPT (microtubule- associated protein Tau), MMP2, TGFB1 and GSK3B. Enrichment analysis of GO biological process suggested that the biological function of RES in AD treatment mainly involved the response to β-amyloid protein, positive regulation of transferase activity, the transmembrane receptor protein tyrosine kinase signaling pathway, regulation of behavior, learning or memory, aging, and transmembrane transport. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathways were AD pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and MAPK signaling pathway. Molecular docking results showed that RES had strong binding with ESR1, GSK3B, MMP9, IGF1R, APP and INS. In the cell model of AD, treatment with 50 μmol/L RES for 12 h significantly reduced the levels of pS396 and pS199 by regulating CDK5 and GSK3β activity (
CONCLUSIONS
RES produces therapeutic effects on AD by acting on multiple targets and affecting multiple signaling pathways and improves AD-associated pathologies
Alzheimer Disease/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Resveratrol/pharmacology*
9.Inhibitory Effect of Resveratrol on LPS-induced Glomerular Mesangial Cells Proliferation and TGF-β1 Expression via Sphingosine Kinase 1 Pathway.
Fu-Zhen FENG ; Wen-Yan GONG ; Si-Yun LI ; Yan-Hui DENG
Chinese journal of integrative medicine 2023;29(6):500-507
OBJECTIVE:
To elucidate the renoprotective effect of resveratrol (RSV) on sphingosine kinase 1 (SphK1) signaling pathway and expression of its downstream molecules including activator protein 1 (AP-1) and transformation growth factor-β1 (TGF-β1) in lipopolysaccharide (LPS)-induced glomerular mesangial cells (GMCs).
METHODS:
The rat GMCs line (HBZY-1) were cultured and randomly divided into 5 groups, including control, LPS (100 ng/mL), and 5, 10, 20 µmol/L RSV-treated groups. In addition, SphK1 inhibitor (SK-II) was used as positive control. GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h. GMCs proliferation was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The proteins expression of SphK1, p-c-Jun and TGF-β1 in GMCs were detected by Western blot, and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay (EMSA). The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016.
RESULTS:
LPS could obviously stimulate GMCs proliferation, elevate SphK1, p-c-Jun and TGF-β1 expression levels and increase the DNA-binding activity of AP-1 (P<0.05 or P<0.01), whereas these effects were significantly blocked by RSV pretreatment. It was also suggested that the effect of RSV was similar to SK-II (P>0.05). Moreover, RSV exhibited good binding affinity towards SphK1, with docking scores of -8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1.
CONCLUSION
RSV inhibited LPS-induced GMCs proliferation and TGF-β1 expression, which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.
Animals
;
Rats
;
Lipopolysaccharides/pharmacology*
;
Mesangial Cells
;
Resveratrol/pharmacology*
;
Transcription Factor AP-1
;
Transforming Growth Factor beta1
;
Intercellular Signaling Peptides and Proteins
;
Cell Proliferation
;
DNA
;
Cells, Cultured
10.Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression.
Feifeng SONG ; Yiwen ZHANG ; Zongfu PAN ; Qi ZHANG ; Xixuan LU ; Ping HUANG
Journal of Zhejiang University. Medical sciences 2021;50(5):582-590
To investigate the molecular mechanism of resveratrol inhibiting the metastasis of liver cancer . HepG2 and Huh7 cells were treated with different concentrations of resveratrol, and the cell viability was determined by CCK-8 assay to determine the optimal concentration of resveratrol for subsequent experiments. The expressions of miR-186-5p in liver cancer tissues and liver cancer cells were determined by quantitative real-time RT-PCR. The migration and invasion of HepG2 and Huh7 cells were detected by wound healing assay and Transwell assay, and the expression levels of epithelial-mesenchymal transition (EMT) related proteins were determined by Western blotting. Resveratrol with concentration of had no effect on the viability of HepG2 and Huh7 cells, so the concentration of resveratrol in subsequent experiments was 6.25 μmol/L. Resveratrol inhibited the wound healing and invasion of liver cancer cells; increased the expression of E-cadherin, and decreased the expression of vimentin and Twist1. The expression of miR-186-5p was significantly down-regulated in liver cancer tissues and cells compared with the adjacent tissues and normal liver cells (both <0.05). Furthermore, resveratrol induced the expression of miR-186-5p in liver cancer cells (both <0.01). Overexpression of miR-186-5p suppressed the migration, invasion and EMT of liver cancer cells. Knockdown of miR-186-5p blocked the inhibition effects of resveratrol on the migration, invasion and EMT of liver cancer cells. Resveratrol could inhibit the metastasis of liver cancer , which might be associated with up-regulating miR-186-5p.
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms/genetics*
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*
;
Resveratrol/pharmacology*