1.Development of a GeXP assay for simultaneous differentiation of six chicken respiratory viruses.
Si-Si LUO ; Zhi-Xun XIE ; Li-Ji XIE ; Yao-Shan PANG ; Qing FAN ; Xian-Wen DENG ; Jia-Bo LIU ; Zhi-Qin XIE
Chinese Journal of Virology 2013;29(3):250-257
A GeXP based multiplex PCR assay was developed to simultaneously detect six different chicken respiratory viruses including H5, H7, H9 subtypes of avian influenza virus(AIV), new castle disease virus (NDV), infectious bronchitis virus(IBV) and infectious laryngotracheitis virus(ILTV). According to the conserved sequences of genes of each pathogen, seven pairs of specific primers were designed, and the reaction conditions were optimized. The specificity and accuracy of GeXP were examined using samples of single and mixed infections of virus. The sensitivity was evaluated by performing the assay on serial 10-fold dilutions of cloned plasmids. To further evaluate the reliability, thirty-four clinical samples were detected by GeXP. The corresponding specific fragments of genes were amplified. The detection limit of GeXP was 10(2) copies/microL when all of 7 pre-mixed plasmids containing target genes of six chicken respiratory viruses were present. In the detection of thirty-four clinical samples, the results of GeXP were accorded with the viral isolation completely. In conclusion, this GeXP assay is a rapid, specific, sensitive and high-throughput method for the detection of chicken respiratory virus infections. It can be applied in rapid differential diagnosis for clinical samples, and also provide an effective tool to prevent and control chicken respiratory diseases with similar clinical symptoms.
Animals
;
Chickens
;
Influenza A virus
;
classification
;
genetics
;
isolation & purification
;
physiology
;
Influenza in Birds
;
diagnosis
;
virology
;
Multiplex Polymerase Chain Reaction
;
methods
;
Poultry Diseases
;
diagnosis
;
virology
;
Respiratory Tract Infections
;
diagnosis
;
veterinary
;
virology
2.Prevalence of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and porcine parvovirus from aborted fetuses and pigs with respiratory problems in Korea.
Kwang Soo LYOO ; Yong Ho PARK ; Bong Kyun PARK
Journal of Veterinary Science 2001;2(3):201-207
Porcine reproductive and respiratory syndrome virus(PRRSV)0, porcine circovirus type 2(PCV-2) and porcine parvovirus (PPV)0 infections were investigated as possible causes of the postweaning multisystemic wasting syndrome(PMWS). Specific primers for RT-PCR and PCR were designed for the differential detection of PRRSV, PCV-2 and PPV. Using PCR, these viruses were detected in homogenized tissue samples from pigs that had respiratory of reproductive problems in the time period between 1998 and 2000; the overall prevalences were: PRRSV 31.4%, PCV-2 46.5%, and PPV 8.1%. PCV-2 was also detected in aborted fetal tissues.
Aborted Fetus/virology
;
Animals
;
Base Sequence
;
Circoviridae Infections/diagnosis/epidemiology/*veterinary
;
Circovirus/genetics/isolation&purification
;
DNA Primers
;
Diagnosis, Differential
;
Korea/epidemiology
;
Parvoviridae Infections/diagnosis/epidemiology/*veterinary
;
Parvovirus, Porcine/genetics/isolation&purification
;
Polymerase Chain Reaction/methods/veterinary
;
Porcine Reproductive and Respiratory Syndrome/diagnosis/*epidemiology
;
Porcine respiratory and reproductive syndrome virus/genetics/isolation & purification
;
Prevalence
;
Respiratory Tract Infections/veterinary/virology
;
Reverse Transcriptase Polymerase Chain Reaction/methods/veterinary
;
Sequence Homology
;
Swine
;
Swine Diseases/diagnosis/*epidemiology
;
Wasting Syndrome/*veterinary/virology
3.Serosurvey of Avian metapneumovirus, Orithobacterium rhinotracheale, and Chlamydia psittaci and Their Potential Association with Avian Airsacculitis.
Zong Hui ZUO ; Tian Yuan ZHANG ; Yong Xia GUO ; Jun CHU ; Guang Gang QU ; Li Zhong MIAO ; Zhi Qiang SHEN ; Cheng HE
Biomedical and Environmental Sciences 2018;31(5):403-406
Seasonal outbreaks of airsacculitis in China's poultry cause great economic losses annually. This study tried to unveil the potential role of Avian metapneumovirus (AMPV), Ornithobacterium rhinotracheale (ORT) and Chlamydia psittaci (CPS) in avian airsacculitis. A serological investigation of 673 breeder chickens and a case-controlled study of 430 birds were undertaken. Results showed that infection with AMPV, ORT, and CPS was highly associated with the disease. The correlation between AMPV and CPS were positively robust in both layers and broilers. Finally, we determined the co-infection with AMPV, ORT, and CPS was prevalent in the sampled poultry farms suffering from respiratory diseases and the outbreak of airsacculitis was closely related to simultaneous exposure to all three agents.
Air Sacs
;
microbiology
;
pathology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Antibodies, Viral
;
blood
;
Case-Control Studies
;
Chickens
;
Chlamydia
;
Chlamydia Infections
;
microbiology
;
pathology
;
veterinary
;
Coinfection
;
Flavobacteriaceae Infections
;
microbiology
;
pathology
;
veterinary
;
Humans
;
Metapneumovirus
;
Ornithobacterium
;
Paramyxoviridae Infections
;
pathology
;
veterinary
;
virology
;
Poultry Diseases
;
microbiology
;
pathology
;
virology
;
Respiratory Tract Diseases
;
microbiology
;
veterinary
;
virology
;
Seroepidemiologic Studies
4.Isolation and characterization of avian metapneumovirus from chickens in Korea.
Ji Sun KWON ; Hyun Jeong LEE ; Seung Hwan JEONG ; Jeong Yong PARK ; Young Ho HONG ; Youn Jeong LEE ; Ho Sik YOUN ; Dong Woo LEE ; Sun Hee DO ; Seung Yong PARK ; In Soo CHOI ; Joong Bok LEE ; Chang Seon SONG
Journal of Veterinary Science 2010;11(1):59-66
Avian metapneumovirus (aMPV) causes upper respiratory tract infections in chickens and turkeys. Although the swollen head syndrome (SHS) associated with aMPV in chickens has been reported in Korea since 1992, this is the study isolating aMPV from chickens in this country. We examined 780 oropharyngeal swab or nasal turbinate samples collected from 130 chicken flocks to investigate the prevalence of aMPV and to isolate aMPV from chickens from 2004-2008. Twelve aMPV subtype A and 13 subtype B strains were detected from clinical samples by the aMPV subtype A and B multiplex real-time reverse transcription polymerase chain reaction (RRT-PCR). Partial sequence analysis of the G glycoprotein gene confirmed that the detected aMPVs belonged to subtypes A and B. Two aMPVs subtype A out of the 25 detected aMPVs were isolated by Vero cell passage. In animal experiments with an aMPV isolate, viral RNA was detected in nasal discharge, although no clinical signs of SHS were observed in chickens. In contrast to chickens, turkeys showed severe nasal discharge and a relatively higher titer of viral excretion than chickens. Here, we reveal the co-circulation of aMPV subtypes A and B, and isolate aMPVs from chicken flocks in Korea.
Animals
;
Antibodies, Viral/blood
;
Base Sequence
;
*Chickens
;
Glycoproteins/chemistry/genetics
;
Metapneumovirus/immunology/*isolation & purification
;
Molecular Sequence Data
;
Paramyxoviridae Infections/immunology/*veterinary/virology
;
*Phylogeny
;
Poultry Diseases/immunology/*virology
;
RNA, Viral/chemistry/genetics
;
Respiratory Tract Infections/immunology/*veterinary/virology
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Serotyping
;
Specific Pathogen-Free Organisms
;
Turkeys