1.Development and application of a rapid scheme for detection of respiratory virus nucleic acid.
Yuanyuan HUANG ; Yu WANG ; Chengxing ZHOU ; Zhichao ZHOU ; Bingliang ZHOU ; Wenkuan LIU ; Rong ZHOU ; Hong CAO
Chinese Journal of Biotechnology 2023;39(9):3838-3848
This study aimed to develop a portable, accurate and easy-to-operate scheme for rapid detection of respiratory virus nucleic acid. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the effect of extraction-free respiratory virus treatment reagent (RTU) on viral nucleic acid treatment and the effect of ultra-fast fluorescence quantitative PCR instrument (FQ-8A) on nucleic acid amplification, respectively. RTU and FQ-8A were combined to develop a rapid detection scheme for respiratory virus nucleic acid, and the positive detection rate was judged by Ct value using a fluorescence quantitative PCR instrument, and the accuracy of the scheme in clinical samples detection was investigated. The results showed that RTU had comparable sensitivity to the automatic nucleic acid extraction instrument, its extraction efficiency was comparable to the other 3 extraction methods when extracting samples of different virus types, but the extraction time of RTU was less than 5 min. FQ-8A had good consistency in detection respiratory syncytial virus (RSV) and adenovirus (ADV) compared with the control instrument ABI-7500, with kappa coefficients of 0.938 (P < 0.001) and 0.887 (P < 0.001), respectively, but the amplification time was only about 0.5 h. The RTU and FQ-8A combined rapid detection scheme had a highly consistent detection rate with the conventional detection scheme, with a sensitivity of 91.70% and specificity of 100%, and a kappa coefficient was 0.944 (P < 0.001). In conclusion, by combining RTU with FQ-8A, a rapid respiratory virus nucleic acid detection scheme was developed, the whole process could be completed in 35 min. The scheme is accurate and easy-to-operate, and can provide important support for the rapid diagnosis and treatment of respiratory virus.
Humans
;
Respiratory Syncytial Virus Infections/diagnosis*
;
Respiratory Syncytial Virus, Human/genetics*
;
Nucleic Acid Amplification Techniques
;
Real-Time Polymerase Chain Reaction
;
Adenoviridae
;
Sensitivity and Specificity
2.Analysis of respiratory syncytial virus nonstructural protein 1 amino acid variation and clinical characteristics.
Hui ZHAI ; Lei Qiong GAO ; Luo REN ; Jun XIE ; En Mei LIU
Chinese Journal of Pediatrics 2023;61(8):695-699
Objective: To investigate the relationship between amino acid variations of respiratory syncytial virus (RSV) nonstructural protein (NS) 1 and the clinical characteristics. Method: A retrospective case review was conducted. From December 2018 to January 2020, a total of 81 cases of hospitalized children who were tested only positive for RSV by RT-PCR or PCR at the Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University were included in the study. The NS1 genes of RSV subtype A and subtype B were amplified by PCR and sequenced. The amino acid sequences were analyzed. The Chi-square test and Mann-Whitney rank sum test were used to compare the clinical characteristics and type Ⅰ interferon levels of children with or without NS1 variation in the variation and non-variation groups. Results: Among 81 cases, there were 58 males and 23 females. There were 11 cases in the variation group, the age of onset was 2.0 (1.0, 11.0) months, included 4 cases of subtype A (variant sites were: 2 cases for Lys33Gln, one case for Gly2Asp, Pro67Ser, Leu137Phe, respectively) and 7 cases of subtype B (variant sites were: two cases for Val121Ile, one case for Tyr30Cys, Val65Met, Asn85Ser, Ser118Asn, Asp124Asn, respectively). These variant sites all appeared at a very low frequency 0.08 (0.04, 0.29) % in the NCBI PROTEIN database. There were 70 cases in non-variation group, the onset age was 3.5 (1.0, 7.0) months. The proportion of dyspnea in the variation group was higher than that in the non-variation group (10/11 vs. 47% (33/70), χ2=7.31, P<0.01). Conclusions: There are some variant sites in nonstructural protein NS1 of RSV. Children may be prone to have dyspnea with NS1 variations.
Child
;
Male
;
Female
;
Humans
;
Infant
;
Respiratory Syncytial Virus Infections
;
Amino Acids
;
Retrospective Studies
;
Respiratory Syncytial Virus, Human/genetics*
;
Polymerase Chain Reaction
3.Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula.
Li-Hua ZHOU ; Jian-Ya XU ; Chen DAI ; Yi-Man FAN ; Bin YUAN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(4):241-251
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid (QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group (M), QFOL-treated group (Q) and the control group (C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins (DEPs) were identified (15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B (FpB) and heparin cofactor II (HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the FpB level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.
Animals
;
Biomarkers
;
blood
;
Chromatography, Liquid
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Fibrinopeptide B
;
analysis
;
genetics
;
Gene Expression Regulation
;
drug effects
;
Heparin Cofactor II
;
analysis
;
genetics
;
Lung
;
pathology
;
Mice, Inbred BALB C
;
Proteome
;
drug effects
;
Proteomics
;
Respiratory Syncytial Virus Infections
;
blood
;
drug therapy
;
Respiratory Syncytial Viruses
;
drug effects
;
Tandem Mass Spectrometry
4.Respiratory Syncytial Virus Outbreak in the Basic Military Training Camp of the Republic of Korea Air Force.
Won Ju PARK ; Seok Ju YOO ; Suk Ho LEE ; Jae Woo CHUNG ; Keun Ho JANG ; Jai Dong MOON
Journal of Preventive Medicine and Public Health 2015;48(1):10-17
OBJECTIVES: An outbreak of acute febrile illness occurred in the Republic of Korea Air Force boot camp from May to July 2011. An epidemiological investigation of the causative agent, which was of a highly infective nature, was conducted. METHODS: Throat swabs were carried out and a multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) assay was performed to identify possible causative factors. RESULTS: The mean age of patients who had febrile illness during the study period was 20.24 years. The multiplex RT-PCR assay identified respiratory syncytial virus (RSV) as the causative agent. The main symptoms were sore throat (76.0%), sputum (72.8%), cough (72.1%), tonsillar hypertrophy (67.9%), and rhinorrhea (55.9%). The mean temperature was 38.75degreesC and the attack rate among the recruits was 15.7% (588 out of 3750 recruits), while the mean duration of fever was 2.3 days. The prognosis was generally favorable with supportive care but recurrent fever occurred in 10.1% of the patients within a month. CONCLUSIONS: This is the first epidemiological study of an RSV outbreak that developed in a healthy young adult group. In the event of an outbreak of an acute febrile illness of a highly infective nature in facilities used by a young adult group, RSV should be considered among the possible causative agents.
Adolescent
;
Adult
;
Antiviral Agents/therapeutic use
;
Body Temperature
;
Disease Outbreaks
;
Humans
;
Male
;
Military Personnel
;
Multiplex Polymerase Chain Reaction
;
Oseltamivir/therapeutic use
;
Pharynx/virology
;
RNA, Viral/chemistry/genetics/metabolism
;
Republic of Korea/epidemiology
;
Respiratory Syncytial Virus Infections/drug therapy/*epidemiology/virology
;
Respiratory Syncytial Viruses/*genetics/isolation & purification
;
Sputum/virology
;
Young Adult
5.Research Progress in the F Gene and Protein of the Respiratory Syncytial Virus.
Chinese Journal of Virology 2015;31(2):201-206
The respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and subfamily Pneumovirinae. The RSV can cause acute infections of the lower respiratory tract in infants. The F gene of the RSV is a conservative gene and varies only slightly in its expression. Few studies focusing on the variability of the F gene have been carried out. F protein (fusion glycoprotein) is a transmembrane glycoprotein that mediates fusion and penetration between the virus and host cells. Neutralizing antibody against the F protein can protect against infection by RSV subtypes A and B. Hence, F protein has become the main target for the development of a monoclonal antibody and vaccine against the RSV. An effective vaccine is not available, so a monoclonal antibody against F protein is now the most important method to reduce the morbidity and severity associated with RSV infection in high-risk children. However, a monoclonal antibody can lead to the production of drug-resistant strains of the RSV. This review focuses on genetic variation of the F gene of the RSV as well as progress in the development of a monoclonal antibody against F protein and a vaccine in the last decade.
Animals
;
Antibodies, Monoclonal
;
immunology
;
Humans
;
Respiratory Syncytial Virus Infections
;
immunology
;
prevention & control
;
virology
;
Respiratory Syncytial Viruses
;
genetics
;
immunology
;
Viral Fusion Proteins
;
genetics
;
immunology
;
Viral Vaccines
;
genetics
;
immunology
6.Research Progress in Membrane Fusion of the Respiratory Syncytial Virus.
Chinese Journal of Virology 2015;31(5):565-572
The respiratory syncytial virus (RSV) is one of the most common causes of acute infection of the lower respiratory tract among children. For viruses in the Paramyxoviridae subfamily, membrane fusion requires a specific interaction between two glycoproteins: the fusion protein and attachment protein. Membrane fusion of the RSV appears to be unique among paramyxoviruses in that fusion is accomplished by the fusion protein alone without help from the attachment protein. Here, we review recent achievements and advances in the study of membrane fusion triggered by the RSV published in high-impact-factor journals. We also review and make a comparative analysis of the popular hypotheses regarding membrane fusion of the RSV. Finally, we discuss the "hot topics" in current research and controversial data published in recent years in the hope of providing references for Chinese researchers.
Animals
;
Humans
;
Respiratory Syncytial Virus Infections
;
virology
;
Respiratory Syncytial Viruses
;
genetics
;
physiology
;
Viral Fusion Proteins
;
genetics
;
metabolism
;
Virus Internalization
7.Epidemiologic characteristics and the relationship with disease severity of respiratory syncytial virus genotypes from children with lower respiratory tract infection in the southern Zhejiang province.
Lin DONG ; Email: DONGLIN@WZHEALTH.COM. ; Lihong DAI ; Jiemin FAN ; Xiaofang CHEN ; Xiaohong JIN ; Yali ZHANG ; Hailing LIN
Chinese Journal of Pediatrics 2015;53(7):537-541
OBJECTIVETo investigate the epidemiological characteristics of respiratory syncytial virus (RSV) subtypes and genotypes in southern Zhejiang province, and to determine whether RSV genotypes are correlated with the disease severity of lower respiratory tract infection (LRTI).
METHODNasopharyngeal secretions (NPS) from children under 5 years of age who were hospitalized with LRTI during 5 consecutive seasons from July 1, 2009 to June 30, 2014 were collected. RSV antigen was determined using direct immunofluorescence (DIF). Two hundred strains of RSV were randomly selected from each epidemic season. RNA was extracted and identified as subtype A or B by using reverse transcription-polymerase chain reaction (RT-PCR), and randomly selected strains of the full length attachment (G) genes of both subtype A and subtype B were amplified by PCR and sequencing. Clinical data were collected, and the disease severity between different genotypes were compared simultaneously.
RESULTOf the total 1 000 randomly selected RSV positive samples, 462 (46.2%) and 538 (53.8%) samples were identified as subtype A and B, respectively. It was found that subtype B predominated in the 2009-2010 and 2012-2014 epidemic seasons and subtype A in 2010-2012 epidemic seasons. A total of 112 strains of complete sequences of G genes were obtained, including four subtype A genotypes NA1, NA4, GA2 and ON1, and six subtype B genotypes BA8-10, BA-C, CB1, and GB2. Phylogenetic analysis revealed that 39/52 (75.0%) subtype A strains were classified as NA1 genotype, followed by ON1 genotype (10/52,19.2%) and 44/60 (73.3%) subtype B strains were classified as BA9 genotype, followed by BA8 genotype (6/60,10.0%). BA9 was the predominant genotype among subtype B except 2010-2011 epidemic season, while NA1 was the predominant genotype among subtype A except 2013-2014 epidemic season. Only ON1 and BA9 genotypes were checked out during 2013-2014 epidemic season. There was statistically significant difference in the average severity score of illness in 39 cases infected with NA1 genotype (4.154) and 44 cases of BA9 genotype (3.341) (U=642.500, P<0.05). Furthermore, in the rate of oxygen uptake, the percentage of those infected with NA1 genotype (33.3%) was higher than those infected with BA9 genotype (13.6%) (χ2=4.544, P<0.05). However, there were no significant difference in the age, clinical symptoms, the percentage of intensive care unit admission, length of hospitalization and the outcome of the disease between NA1 and BA9 infection.
CONCLUSIONThe shift of predominant RSV subtype from 2009 to 2014 were B-A-A-B-B in the southern areas of Zhejiang province. Multiple genotypes co-circulated during five RSV epidemic seasons. NA1 and BA9 genotypes were the predominant genotypes of subtype A and B, respectively. Compared with infection with BA9 genotype, NA1 genotype infection was associated with more severe disease and proportion of patients needed oxygen therapy was higher.
Child, Preschool ; China ; epidemiology ; Genotype ; Hospitalization ; Humans ; Infant ; Nasopharynx ; Phylogeny ; Polymerase Chain Reaction ; Respiratory Syncytial Virus Infections ; epidemiology ; Respiratory Syncytial Virus, Human ; genetics ; Respiratory Tract Infections ; epidemiology ; Seasons
8.Respiratory Viral Infections after Hematopoietic Stem Cell Transplantation in Children.
Jae Hong CHOI ; Eun Hwa CHOI ; Hyoung Jin KANG ; Kyung Duk PARK ; Sung Sup PARK ; Hee Young SHIN ; Hoan Jong LEE ; Hyo Seop AHN
Journal of Korean Medical Science 2013;28(1):36-41
This study was performed to characterize respiratory viral infections in pediatric patients undergoing hematopoietic stem cell transplantation (HSCT). Study samples included 402 respiratory specimens obtained from 358 clinical episodes that occurred in the 116 children of the 175 consecutive HSCT cohort at Seoul National University Children's Hospital, Korea from 2007 to 2010. Multiplex reverse-transcription polymerase chain reactions were performed for rhinovirus, respiratory syncytial virus (RSV), parainfluenza viruses (PIVs), adenovirus, human coronavirus (hCoV), influenza viruses and human metapneumovirus. Viruses were identified in 89 clinical episodes that occurred in 58 patients. Among the 89 clinical episodes, frequently detected viruses were rhinovirus in 25 (28.1%), RSV in 23 (25.8%), PIV-3 in 16 (18.0%), adenovirus in 12 (13.5%), and hCoV in 10 (11.2%). Lower respiratory tract infections were diagnosed in 34 (38.2%). Neutropenia was present in 24 (27.0%) episodes and lymphopenia was in 31 (34.8%) episodes. Sixty-three percent of the clinical episodes were hospital-acquired. Three patients died of respiratory failure caused by respiratory viral infections. Respiratory viral infections in pediatric patients who have undergone HSCT are common and are frequently acquired during hospitalization. Continuous monitoring is required to determine the role of respiratory viruses in immunocompromised children and the importance of preventive strategies.
Adenoviridae/genetics/isolation & purification
;
Adolescent
;
Adult
;
Child
;
Child, Preschool
;
Cohort Studies
;
Coronavirus/genetics/isolation & purification
;
Female
;
*Hematopoietic Stem Cell Transplantation
;
Hematopoietic Stem Cells/cytology
;
Hospitalization
;
Humans
;
Infant
;
Lymphopenia/epidemiology
;
Male
;
Neutropenia/epidemiology
;
Parainfluenza Virus 3, Human/genetics/isolation & purification
;
Prevalence
;
Respiratory Syncytial Viruses/genetics/isolation & purification
;
Respiratory Tract Infections/epidemiology/therapy/*virology
;
Reverse Transcriptase Polymerase Chain Reaction
;
Rhinovirus/genetics/isolation & purification
;
Seasons
;
Young Adult
9.Preliminary analysis on respiratory syncytial virus identified in children with acute respiratory infections in Tibet Autonomous Region, China.
Jie DENG ; Ru-Nan ZHU ; Yuan QIAN ; Yu SUN ; Lin-Qing ZHAO ; Fang WANG ; Hong WU ; Min-Na SHAN ; Mei-Duo DEJI
Chinese Journal of Virology 2012;28(2):97-102
To understand the role of respiratory syncytial virus (RSV) in children with acute respiratory infections (ARI) in Tibet Autonomous Region and the contribution of two major groups of RSV, nasopharyngeal aspirates (NPA) were collected from hospitalized children with ARI in Department of Pediatrics, Tibet People's Hospital in Lasa, Tibet from April to July in 2011 and tested for seven common respiratory viruses and human metapneumovirus (hMPV) by direct immunofluorescence assay (DFA). Total RNAs were extracted from RSV positive samples by DFA and reverse transcripted to cDNA. Nested-PCR was employed to determine the genogroups of RSV, which were confirmed by real time-PCR and sequence analysis for G protein encoding gene. The Characteristics and variations of G genes from RSV in this project were identified by sequence comparison with those G genes in GenBank. Out of 167 samples, 65 were positive for respiratory viruses with a total positive rate of 38.9%, including 45 (69.2%, 45/65)positive samples for RSV. Among 42 samples that were positive for RSV and genotyped, 40 were identified as group A and 2 as group B. Sequence analysis of full-length G genes for 7 RSV of group A indicated that all of these belonged to subgroup GA2. The nucleotide identities between RSVs from Tibet and prototype A2 strain were 90.7%-91.8%, with 86.5%-87.2% identities of amino acid. The mutations of amino acids were mainly located in both ends of a highly conserved region in the ectodomain of the G proteins. The data indicated that RSV was the most important viral etiologic agent of ARI in spring of 2011 in Tibet and group A of RSV was predominant during the study period. High divergence existed in the ectodomain of G proteins of RSVs from Tibet.
Acute Disease
;
Amino Acid Sequence
;
Female
;
Humans
;
Infant
;
Male
;
Molecular Sequence Data
;
Phylogeny
;
Respiratory Syncytial Virus Infections
;
virology
;
Respiratory Syncytial Viruses
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Respiratory Tract Infections
;
virology
;
Sequence Alignment
;
Tibet
;
Viral Proteins
;
chemistry
;
genetics
10.Evaluation of serum specific IgM detection in diagnosis of respiratory viral infections in children.
Qin-wei SONG ; Ru-nan ZHU ; Jie DENG ; Fang WANG ; Lin-qing ZHAO ; Yu SUN ; Ya-xin DING ; Yuan QIAN
Chinese Journal of Pediatrics 2012;50(6):440-444
OBJECTIVEThe present study was designed to explore the practical application of the rapid etiological diagnosis by detecting specific IgM antibody against common respiratory viruses in children with acute lower respiratory infections (ALRI).
METHODClinical specimens including nasopharyngeal aspirates and serum of acute phase from hospitalized children were collected from 207 infants and children with acute lower respiratory infections from March 2009 to September 2010. Seven common respiratory virus antigens were identified from the collected nasopharyngeal aspirates by direct immunofluorescence assay (DFA). ELISA was used to detect specific IgM antibody against RSV, ADV, IFVA, IFVB and PIV, while indirect immunofluorescence assay (IFA) was used to detect specific IgM antibody against RSV, ADV, IFVA, IFVB, PIV1, PIV2 and PIV3 in collected acute phase serum.
RESULTThe overall positive rates to detect viral antigen by using DFA, ELISA and IFA was 67.6%, 57.5% and 39.6%, respectively. The consistent rate of ELISA and IFA versus accepted DFA were 21.7% and 31.4%, respectively. The average days from onset of the symptoms to blood sample collection for those with the consistent results by ELISA and DFA were 12.0 d for ADV, 9.6 d for PIV2, 9.5 d for IFV, and 5.3 d for RSV, respectively, and by IFA and DFA were 15.0 d for PIV3, 9.2 d for ADV, and 7.4 d for RSV, respectively. Among all age groups, the consistent rate of serum viral IgM and antigen detections was highest in children younger than 3 years old.
CONCLUSIONAlthough there were differences between serum IgM antibody and viral antigen detections, specific IgM antibody detection was of value in early and rapid etiological diagnosis of pediatric ALRI, especially for young children. It could provide serologic evidence of respiratory virus infection. The diagnostic rate of pathogen could be improved if it was used in combination with viral antigen diagnostic methods.
Antibodies, Viral ; analysis ; blood ; Antibody Specificity ; Antigens, Viral ; analysis ; Child ; Child, Preschool ; Enzyme-Linked Immunosorbent Assay ; Female ; Fluorescent Antibody Technique ; Humans ; Immunoglobulin M ; analysis ; blood ; Infant ; Male ; Nasopharynx ; virology ; RNA Viruses ; genetics ; isolation & purification ; Respiratory Syncytial Virus Infections ; diagnosis ; virology ; Respiratory Syncytial Viruses ; genetics ; isolation & purification ; Respiratory Tract Infections ; diagnosis ; immunology ; virology ; Sensitivity and Specificity

Result Analysis
Print
Save
E-mail