1.Molecular basis and significance of mechanical force research in respiratory field.
Journal of Biomedical Engineering 2009;26(1):221-224
Mechanical force plays an important role in physiological function and pathophysiologic conditions of respiratory system. Recently, a number of researches focused on how mechanical force affected pulmonary cells. This paper reviews the molecular basis of mechanical force in detail. The significance of mechanical force in respiratory therapy is also discussed.
Airway Resistance
;
Biomechanical Phenomena
;
Humans
;
Lung Compliance
;
Respiratory Mechanics
;
physiology
;
Respiratory Physiological Phenomena
;
Respiratory System
2.Production and law of variation of the pleural cavity intrinsic pressure and the pressure of alveolar wall during respiratory process.
Journal of Biomedical Engineering 2012;29(2):264-266
All physiologic textbooks deal with pleural cavity pressure, alveolar wall pressure and pressure inside the lung, but they have not stated these ideas clearly. The present study reveals production and Law of variation of the intrinsic pressure of pleural cavity, the pressure of alveolar wall and the intrinsic pressure in the alveoli. Pleural cavity intrinsic pressure is produced by the pressure from pleura expanding or compressing force of the lungs. When the lungs calmly inhale, the thorax expands, pleural cavity negative pressure increase. When the lungs calmly exhale, thorax reduces, but thorax and lungs are still in the extended state, pleural cavity is still in negative pressure. With thorax reducing, negative pressure decreases. When the lungs are at the forced expiration, the lung pleura and wall pleura extrude pleural cavity, only to produce positive pressure. The pressure of alveolar wall is the algebraic sum of the intrinsic pressure of pleural cavity, the intrinsic pressure of pulmonary tissue and the additional pressure of alveolar wall. We did the calculation of additional pressure on the alveolar wall by using Laplace formula of spherical elastic membrane. The intrinsic pressure of alveoli depends on the moving speed or slowness of expansion or compression of alveolar wall and the size of trachea resistance.
Humans
;
Pleural Cavity
;
physiology
;
Pressure
;
Pulmonary Alveoli
;
physiology
;
Respiration
;
Respiratory Mechanics
;
physiology
3.Air distribution in the bronchial tree of human lungs.
Wei LAI ; Xiaoping TAN ; Juemin PEI
Journal of Biomedical Engineering 2004;21(2):229-232
A three-element model of lumped parameter based on the statistic data of Weible's symmetric model and on the reference anatomic figures of the bronchial tree of the lungs has been proposed using the fluid network theory. It was assumed that the upper five or seven generations of the twenty-four generations of the respiratory airway are asymmetric, while the rest are symmetric. GEAR method was used to solve the ordinary differential equations. The pressure and flow rate distributions in different positions of the lungs during normal respiration and partial bronchial obstruction were compared, respectively. This model has great significance in finding out the air distribution in the human bronchial tree under various physiological and pathological conditions.
Airway Resistance
;
Bronchi
;
anatomy & histology
;
pathology
;
physiology
;
Humans
;
Models, Biological
;
Respiration
;
Respiratory Mechanics
;
physiology
4.Electrical stimulation therapy improves sleep respiratory parameters in obstructive sleep apnea syndrome: a meta-analysis.
Jie-Wen TAN ; Wei-Wei QI ; Rui-Xin YE ; Yuan-Yuan WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):623-627
Recent clinical trials have shown that electrical stimulation has beneficial effects in obstructive sleep apnea syndrome (OSAS). The purpose of this study was to evaluate the efficacy of electrical stimulation therapy for OSAS with a meta-analysis. The meta-analysis of all relative studies was performed through searching international literature, including PUBMED, CNKI, and EMBASE databases. This literature analysis compared all patients undergoing electrical stimulation therapy with respect to the respiratory disturbance index (RDI) and changes in sleep structure. Six studies were selected involving a total of 91 patients. The meta-analysis indicated that electrical stimulation therapy reduced RDI, longest apnea time, and improved the minimum SaO2. Based on the evidence found, electrical stimulation may be a potential therapy for OSAS, warranting further clinical trials.
Electric Stimulation Therapy
;
methods
;
Humans
;
Respiratory Mechanics
;
physiology
;
Sleep
;
physiology
;
Sleep Apnea, Obstructive
;
physiopathology
;
therapy
5.Effect of respirator resistance on tolerant capacity during graded load exercise.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(3):434-437
Respirator breathing resistance impacts performance of wearers during constant work load. However, it is less clear as to how breathing resistance affects the tolerant capacity of users during graded work load. The present study investigated the tolerant capacity of 8 individuals during incremental work load. The 8 subjects were required to wear two matched respirators (respirators I and II which were designed to have different breathing resistances and the same dead space) respectively on separate days and then work to end points. Minute ventilation (V(E)), breathing frequency (BF), oxygen consumption (VO(2)) and heart rate (HR) were recorded during exercise, while tolerant time, response time and breathing discomfort were measured at the end of each test trial. The test variables were compared between the two respirators by using matched-pairs t-test. The results showed that the tolerant time was significantly reduced for the respirator I with higher level of breathing resistance when compared with its counterpart with lower breathing resistance (respirator II) (P<0.05). The same changes occurred for response time. Results also showed a significant increase in V(E) and BF for respirator I wearers when the work load was above 125 W. The O(2) consumption was similar under the two breathing resistance conditions. These findings suggested that the respiratory resistance caused by self-contained breathing apparatus (SCBA) has an impact on the tolerant capacity of users.
Airway Resistance
;
physiology
;
Exercise
;
physiology
;
Exercise Tolerance
;
physiology
;
Humans
;
Male
;
Oxygen Consumption
;
physiology
;
Physical Exertion
;
physiology
;
Respiration, Artificial
;
methods
;
Respiratory Mechanics
;
physiology
;
Young Adult
6.Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract.
Fusheng LI ; Xinxi XU ; Dong SUN ; Xiuguo ZHAO ; Shulin TAN
Journal of Biomedical Engineering 2013;30(2):409-414
The research on cycle change form of the pressure and the wall shear in human upper respiratory tract can strengthen understanding of the characteristics of the airflow in the place and provide us with a scientific basis for analyzing the diffusion, transition and deposition patterns of aerosol there. In our study, we used large eddy simulation to emulate the pressure and wall shear in human upper respiratory tract in conditions of the low intensive respiratory patterns, and discussed the distributing disciplinarian of the pressure and wall shear in mouth-throat model and trachea-triple bifurcation. The results showed that the pressure gradient variation in human upper respiratory tract was mainly fastened from root of epiglottis to trachea. The minimum pressure at the interim of inspiration was a duplication of the interim of expiration, and located on the posterior wall of the glottis. The pressure gradient variation was evident on trachea and its fork. The wall shear changed with the velocity of the air flow, and its direction changed periodically with breath cycle.
Biomechanical Phenomena
;
Bronchi
;
physiology
;
Computer Simulation
;
Epiglottis
;
physiology
;
Humans
;
Mouth
;
physiology
;
Nose
;
physiology
;
Pharynx
;
physiology
;
Pressure
;
Pulmonary Ventilation
;
physiology
;
Respiratory Mechanics
;
physiology
;
Respiratory Physiological Phenomena
;
Respiratory System
;
Shear Strength
;
Stress, Mechanical
;
Trachea
;
physiology
7.Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure.
Chun PAN ; Lu CHEN ; Yun-Hang ZHANG ; Wei LIU ; Rosario URBINO ; V Marco RANIERI ; Hai-Bo QIU ; Yi YANG
Chinese Medical Journal 2016;129(14):1652-1657
BACKGROUNDStress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Pawstress index on lung mechanics and the correlation between Pawstress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients.
METHODSTwenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio <30%. Respiratory elastance, gas-exchange, Pawstress index, and PLstress index were measured. Student's t-test, regression analysis, and Bland-Altman analysis were used for statistical analysis.
RESULTSPneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Pawstress index and the PLstress index in H group (R2 = 0.56, P < 0.01) and L group (R2 = 0.85, P < 0.01).
CONCLUSIONIn the ARF patients with MV, Pawstress index can substitute for PLto guide ventilator settings.
TRIAL REGISTRATIONClinicalTrials.gov NCT02196870 (https://clinicaltrials.gov/ct2/show/NCT02196870).
Adult ; China ; Female ; Humans ; Lung ; physiology ; Lung Compliance ; physiology ; Male ; Middle Aged ; Positive-Pressure Respiration ; Regression Analysis ; Respiratory Distress Syndrome, Adult ; therapy ; Respiratory Mechanics ; Tidal Volume ; physiology
8.Comparison of the effects of deep and moderate neuromuscular block on respiratory system compliance and surgical space conditions during robot-assisted laparoscopic radical prostatectomy: a randomized clinical study.
Shao-Jun ZHU ; Xiao-Lin ZHANG ; Qing XIE ; Yan-Feng ZHOU ; Kui-Rong WANG
Journal of Zhejiang University. Science. B 2020;21(8):637-645
OBJECTIVE:
Robot-assisted radical prostatectomy (RARP) requires pneumoperitoneum (Pnp) and a steep head-down position that may disturb respiratory system compliance (Crs) during surgery. Our aim was to compare the effects of different degrees of neuromuscular block (NMB) on Crs with the same Pnp pressure during RARP.
METHODS:
One hundred patients who underwent RARP were enrolled and randomly allocated to a deep or moderate NMB group with 50 patients in each group. Rocuronium was administered to both groups: in the moderate NMB group to maintain 1-2 responses to train-of-four (TOF) stimulation; and in the deep NMB group to maintain no response to TOF stimulation and 1-2 responses in the post-tetanic count. Pnp pressure in both groups was 10 mmHg (1 mmHg=133.3 Pa). Peak inspiratory pressure (Ppeak), mean pressure (Pmean), Crs, and airway resistance (Raw) were recorded after anesthesia induction and at 0, 30, 60, and 90 min of Pnp and post-Pnp. Surgical space conditions were evaluated after the procedure on a 4-point scale.
RESULTS:
Immediately after the Pnp, Ppeak, Pmean, and Raw significantly increased, while Crs decreased and persisted during Pnp in both groups. The results did not significantly differ between the two groups at any of the time points. There was no difference in surgical space conditions between groups. Body movements occurred in 14 cases in the moderate NMB group and in one case in the deep NMB group, and all occurred during obturator lymphadenectomy. A significant difference between the two groups was observed.
CONCLUSIONS
Under the same Pnp pressure in RARP, deep and moderate NMBs resulted in similar changes in Crs, and in other respiratory mechanics and surgical space conditions. However, deep NMB significantly reduced body movements during surgery.
Aged
;
Humans
;
Laparoscopy/methods*
;
Lung Compliance/physiology*
;
Male
;
Neuromuscular Blockade
;
Prostatectomy/methods*
;
Respiratory Mechanics
;
Robotic Surgical Procedures/methods*
;
Rocuronium/pharmacology*
9.Comprehensive testing system for cardiorespiratory interaction research.
Zhengbo ZHANG ; Buqing WANG ; Weidong WANG ; Jiewen ZHENG ; Hongyun LIU ; Kaiyuan LI ; Congcong SUN ; Guojing WANG
Journal of Biomedical Engineering 2013;30(2):395-402
To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.
Algorithms
;
Artifacts
;
Autonomic Nervous System
;
physiopathology
;
Diagnosis, Computer-Assisted
;
methods
;
Electrocardiography
;
Equipment Design
;
Heart
;
physiology
;
Humans
;
Lung
;
physiology
;
Monitoring, Physiologic
;
instrumentation
;
methods
;
Respiration
;
Respiratory Mechanics
;
physiology
10.The Reflex Effects on the Respiratory Regulation of the CO2 at the Different Flow Rate and Concentration.
Nermin YELMEN ; Gulderen SAHIN ; Tulin ORUC ; Ibrahim GUNER
Yonsei Medical Journal 2007;48(5):856-864
PURPOSE: The purpose of this study was to investigate the activation of the respiratory centers during insufflation of the larynx with CO2 at different flow rates and concentrations. MATERIALS AND METHODS: The experiments were carried out in spontaneous air breathing rabbits, anesthetized with thiopental sodium (25mg kg(-1) i.v.). The larynx was separated from the oropharyngeal cavity and the trachea. The tidal volume (VT) and respiratory frequency (f min(-1)) were recorded from the lower tracheal cannula. The respiratory minute volume (VE) was calculated, the action potentials from the right phrenic nerve were recorded and the inspiratory (TI) and expiratory (TE) periods and the mean inspiratory flow rate (VT/TI) were calculated. The larynx was insufflated at flow rates of 500mL min(-1) and 750mL min(-1), with 7 and 12% CO2-Air by means of a respiratory pump. RESULTS: Insufflation of the larynx, with both gas mixtures, decreased the f and VT significantly. The TI and TE were found to increase significantly due to the decreasing in f. There was a significant decrease in VT/TI ratio. Following bilateral midcervical vagotomy, on the passing of both gas mixtures, significant decreases were observed in the VT, and the responses of f, TI and TE were abolished. After cutting the superior laryngeal nerve, the responses of the VT to both gas mixtures were abolished. CONCLUSION: In conclusion, the results of this study purpose that the stimulation of the laryngeal mechanoreceptors by the effect of hyper- capnia decreases the activation of the respiratory center
Air
;
Animals
;
Carbon Dioxide/chemistry/*pharmacology
;
Female
;
Laryngeal Nerves/drug effects/physiology
;
Male
;
Mechanoreceptors/drug effects/physiology
;
Rabbits
;
Reflex/*drug effects/physiology
;
*Respiratory Mechanics/drug effects
;
Tidal Volume