1.Color stability of ceromer of different thicknesses and resin adhesive materials of different types after accelerated aging.
Likai WANG ; Yanan LIU ; Yan ZHENG ; Pingping LI
West China Journal of Stomatology 2015;33(2):201-205
OBJECTIVEThis study aims to investigate the color stability of ceromer with different thicknesses and different types of resin adhesive materials after accelerated aging and provide references for clinical application and selections.
METHODSNine groups of experimental samples were used, and each group contained five samples. We made joint samples with ceromer having three different thicknesses (1.00, 0.75, 0.50 mm) combined with three different resin adhesive materials (RelyX Veneer, RelyX Unicem, Filtek Z350 Flow), respectively. All samples were placed into Xenon Lamp Aging Instrument to implement accelerated aging. Spectrophotometer was used to measure the lightness (L*), red green color value (a*), and blue yellow color value (b*) of all samples before and after accelerated aging. The change of lightness (ΔL), red green color value (Δa), blue yellow color value (Δb), and color variation (ΔE) were also calculated. We investigated the influence of ceromer veneer thicknesses and resin adhesive material types on color variation by two-factor analysis of variance.
RESULTSThe thickness and type factors showed significant influence on ΔE values, and exhibited interactions (P < 0.05). The ΔE values of all experimental groups were lower than 3.3. After the accelerated aging process, all L*, a*, and b* values of the experimental groups decreased and the ΔL values were lower than 2.0.
CONCLUSIONCeromer veneer thickness and resin adhesive material types could affect the color stability of ceromer veneer and resin adhesive materials. The changes in lightness and color in ceromer veneer and resin adhesive materials are considered clinically acceptable after accelerated aging.
Ceramics ; Color ; Composite Resins ; Dental Cements ; chemistry ; Light ; Resin Cements
2.Hardness of resin cement cured under different thickness of lithium disilicate-based ceramic.
Chinese Medical Journal 2011;124(22):3762-3767
BACKGROUNDThe lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light attenuation by ceramic material was material-dependent. Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics. The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic.
METHODSA lithium disilicate-based ceramic was used in this study. The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer. The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1, 2 and 3 mm, respectively) for different times (10, 20, 30, 40, 50 and 60 seconds, respectively). The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences.
RESULTSIntensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm(2) to about 216 mW/cm(2)2, 80 mW/cm(2) and 52 mW/cm(2) at thicknesses of 1 mm, 2 mm and 3 mm, respectively. Resin cement specimens self-cured alone showed significantly lower hardness values. When resin cement was light-cured through ceramic discs with a thickness of 1 mm, 2 mm and 3 mm, no further increasing in hardness values was observed when light-curing time was more than 30 seconds, 40 seconds and 60 seconds, respectively.
CONCLUSIONSWithin the limitation of the present study, ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement. When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness, prolonging light-curing time accordingly may still be necessary to insure complete polymerization.
Ceramics ; chemistry ; Dental Porcelain ; chemistry ; Light ; Resin Cements ; chemistry
3.Research on the resin bond durability of glass-infiltrated alumina ceramic.
Xiang-feng MENG ; Xiao-ping LUO ; Ning GU
West China Journal of Stomatology 2010;28(4):367-369
OBJECTIVETo analyze the effect of different silane coupling agents on the resin bond durability of glass-infiltrated alumina ceramic. Methods A glass-infiltrated alumina ceramic was silanized or not by three silane coupling agents. The treated ceramic surfaces were bonded with two resin cements. Their micro-bond strength were measured after 0, 30,000 thermal cycles.
RESULTSBefore thermal cycling, resin cement A had lowest bond strength to ceramic, and ceramic treated by silane coupling agent A with two cements had lower bond strength than those treated by silane coupling agent B and C. After thermal cycling, cement A had no bond strength with no treated ceramic, only ceramic treated by silane coupling agent A with two cements had more than 5 MPa bond strength.
CONCLUSIONThe glass-infiltrated alumina cermaic treated by the silane coupling agent activated by 10-methacryloyloxydecyl-dihydrogen phosphate could obtain better bond durability with different type of resin cements.
Aluminum Oxide ; chemistry ; Ceramics ; chemistry ; Dental Bonding ; Glass ; chemistry ; Resin Cements ; chemistry
4.Effect of different dentin cleaning agents on the bond strength of self-adhesive resin cement to dentin.
Jilan JIAO ; Liwei ZENG ; Hao ZHOU ; Lu DENG ; Niangou ZHOU ; Ping CHEN ; Hui JIANG
West China Journal of Stomatology 2015;33(3):306-310
OBJECTIVEThis study aims to evaluate the bond strength of a self-adhesive resin cement to dentin by ethylene diamine tetraacetic acid (EDTA) and NaClO.
METHODSTwenty-seven freshly extracted non-carious human premolars were prepared to expose the buccal dentin and randomly divided into three groups: control group (A group), EDTA group (B group) and NaClO group (C group). All teeth were bonded to dentin using a self-adhesive resin cement after the teeth in the A group were processed with distilled water. The B and C group were processed with 3%EDTA and 1%NaClO, respectively. After 24 hours at 37 °C water, the shear bond strengths of the twenty-four specimens were measured. All statistical analysis was performed using SPSS 17.0 software package. Each fractured specimen was examined under dental microscope. Three new specimens were cut, and the morphologies of the cement-dentin interface were observed under scanning electron microscope (SEM).
RESULTSThe shear bond strength in the A group, B group and C group was (8.55±0.63), (8.47±0.56) and (12.97± 0.59) MPa, respectively. The difference between A group and B group was no statistically significant (P>0.05), whereas the difference between C group and B group (or A group) was statistically significant (P<0.05). SEM observation of the cement-dentin interface in the C group showed good adaptation, but resin tags were not observed. The other two groups showed poor bonding interface. Most of the fractured adhesive dentin surfaces exhibited cohesive failure in the A group and B group. All the fractured adhesive dentin surfaces exhibited cohesive failure in the C group.
CONCLUSION1% NaClO can increase the bond strength of self-adhesive resin cement to dentin, but 3%EDTA has no effect.
Adhesives ; Dental Bonding ; Dental Stress Analysis ; Dentin ; chemistry ; Dentin-Bonding Agents ; Detergents ; chemistry ; Humans ; Resin Cements
5.Surface modification and microstructure of single-walled carbon nanotubes for dental composite resin.
Yang XIA ; Feimin ZHANG ; Li'na XU ; Ning GU
Journal of Biomedical Engineering 2006;23(6):1279-1283
In order to improve its dispersion condition in dental composite resin and enhance its interaction with the matrix, single-walled carbon nanotubes(SWNTs) were refluxed and oxidized, then treated by APTE. Their outer surface were coated by nano-SiO2 particles using sol-gel process, then further treated by organosilanes ATES. IR and TEM were used to analyze modification results. TEM pictures showed nano-particles were on the surface of SWNTs; IR showed characteristic adsorbing bands of SiO2. Composite resin specimen with modified SWNTs was prepared and examined by TEM. SWNTs were detected in composite resin matrix among other inorganic fillers.
Composite Resins
;
chemistry
;
Dental Materials
;
chemistry
;
Humans
;
Nanotubes, Carbon
;
chemistry
;
Resin Cements
;
chemistry
;
Silicon Dioxide
;
chemistry
;
Surface Properties
;
Tensile Strength
6.Effect of base layer thickness of a self-adhesive resin on dentin bonding strength.
Zhaoran FU ; CaiXue ; Fucong TIAN ; Xiaoyan WANG
Chinese Journal of Stomatology 2016;51(2):93-97
OBJECTIVETo evaluate the effect of base layer thickness of DyadFlow(DF) self-adhesive resin on dentin bonding strength.
METHODSTwenty extracted intact human molars were randomly selected and the occlusal surface of each molar was prepared by removing the enamel and exposing the dentin surface. The prepared molars were divided, randomly and equally, into 4 groups. For groups G0.5, G1.0 and G2.0, DF was applied directly on the dentin surfaces following the manufacturer's instruction, and for group GOB, OptiBond All-in-One(OB) self etching adhesive was applied on the dentin surface before using DF. The base layer thickness of DF was 0.5 mm, 1.0 mm, 2.0 mm, 2.0 mm for groups G0.5, G1.0, G2.0 and GOB, respectively. Composite crown were built up on each tooth, then the samples were sectioned longitudinally into sticks with proximately 1.0 mm2 bonding area(for microtensile bond strength[MTBS] testing) or slabs (for bonding interface observation with SEM). Fifteen sticks were obtained for each group. The fracture surface was also observed using SEM and the fracture type of each specimen was determined.
RESULTSThe MTBS were: GOB (20.19±3.11) MPa>G0.5 (8.65±1.58) MPa>G1.0 (6.65±1.13) MPa>G2.0 (5.70±0.60) MPa(P<0.05). Bonding interface fracture B2 was most frequently observed for all groups: G0.5: 14/15, G1.0: 13/15, G2.0: 14/15 and GOB: 13/15.
CONCLUSIONSThe MTBS decreased when the base layer thickness of DF increased. Direct application of DF self-adhesive resin on dentin surface adhesive restorations should be concerned.
Adhesives ; chemistry ; Crowns ; Dental Bonding ; Dental Enamel ; Dentin ; chemistry ; Dentin-Bonding Agents ; chemistry ; Humans ; Molar ; Resin Cements ; chemistry ; Tensile Strength
7.Effect of SiO2-ZrO2 slurry coating on shear bond strength of zirconia to resin cement.
Chinese Journal of Stomatology 2022;57(9):932-937
Objective: To evaluate the effect of shear bond strength between resin cement and zirconia using SiO2-ZrO2 slurry coating. Methods: One hundred and forty pre-sintered zirconia discs were randomly divided into seven groups (n=20) according to the surface treatments: AS (as-sintered), SB (sand blasting with Al2O3), 2SiO2-1ZrO2 (2∶1 mole ratio SiO2-ZrO2 coating), 1SiO2-1ZrO2 (mole ratio 1∶1 SiO2-ZrO2 coating), 1SiO2-2ZrO2 (mole ratio 1∶2 SiO2-ZrO2 coating), 1SiO2-3ZrO2 (mole ratio 1∶3 SiO2-ZrO2 coating), 1SiO2-4ZrO2 (mole ratio 1∶4 SiO2-ZrO2 coating). Each zirconia disc was bonded to composite resin cylinder using resin cement. All specimens were stored in distilled water (37 ℃, 24 h). Each group was divided into two subgroups in which half specimens were tested using universal testing machine and another half specimens accepted artificial aging of 5 000 times thermocycling then tested. Scaning electron microscopy (SEM) was used to observe the micro-morphology of coating surface etched by hydrofluoric acid,then the coating thickness was measured. Results: Before artificial aging, 1SiO2-1ZrO2 showed a higher shear bond strength [(41.69±6.28) MPa] than all the other group (P<0.05). 1SiO2-2ZrO2 gained a higher strength than AS, SB, 1SiO2-3ZrO2 and 1SiO2-4ZrO2 (P<0.05). However, 1SiO2-2ZrO2 did not get a significant higher shear bond strength than 2SiO2-1ZrO2 (P>0.05). No significant differences were found among SB, 2SiO2-1ZrO2 and 1SiO2-3ZrO2 (P>0.05). After artificial aging, shear bond strength of all groups were decreased significantly besides 2SiO2-1ZrO2. 2SiO2-1ZrO2, 1SiO2-1ZrO2 and 1SiO2-2ZrO2 [(24.13±5.50), (22.28±4.40), (23.11±4.80) MPa] showed higher shear bond strength than SB and 1SiO2-3ZrO2 (P<0.05),no intergroup differences were observed (P>0.05). Shear bond strength of AS and 1SiO2-4ZrO2 fell to 0 MPa approximately. The SEM images of etched coating surface showed contraction fissure due to different thermal expansion coefficient between SiO2 and ZrO2 and intercrystal pores of zirconia. The thickness of coating was measured to be less than 30 μm. Conclusions: Mole ratio 1∶1 SiO2-1ZrO2 slurry coating showed the highest shear bond strength of resin cement to zirconia.
Dental Bonding
;
Materials Testing
;
Resin Cements/chemistry*
;
Silicon Dioxide
;
Surface Properties
;
Zirconium
8.Applications of collagen extrafibrillar demineralization in dentin bonding.
Meng Meng WANG ; Ying Ying YU ; Wei JIN ; Peng MA ; Ya Ping GOU
Chinese Journal of Stomatology 2023;58(1):81-85
The existing dentin bonding systems based on acid-etching technique lead to the loss of both extrafibrillar and intrafibrillar minerals from dentin collagen, causing excessive demineralization. Because resin monomers can not infiltrate the intrafibrillar spaces of demineralized collagen matrix, degradation of exposed collagen and resin hydrolysis subsequently occur within the hybrid layer, which seriously jeopardizing the longevity of resin-dentin bonding. Collagen extrafibrillar demineralization can effectively avoid the structural defects within the resin-dentin interface caused by acid-etching technique and improve the durability of resin-dentin bonding, by preserving intrafibrillar minerals and selectively demineralizing extrafibrillar dentin. The mechanism and research progress of collagen extrafibrillar demineralization in dentin bonding are reviewed in the paper.
Humans
;
Collagen
;
Dental Bonding
;
Dentin/chemistry*
;
Dentin-Bonding Agents/chemistry*
;
Materials Testing
;
Minerals
;
Resin Cements/chemistry*
;
Tooth Demineralization
9.Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite.
Wenjia LIU ; Jing FU ; Shuang LIAO ; Naichuan SU ; Hang WANG ; Yunmao LIAO
Journal of Biomedical Engineering 2014;31(2):361-364
The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could meet the clinical requirements.
Acrylic Resins
;
chemistry
;
Ceramics
;
chemistry
;
Composite Resins
;
chemistry
;
Dental Bonding
;
Dental Porcelain
;
chemistry
;
Humans
;
Polyurethanes
;
chemistry
;
Resin Cements
;
chemistry
;
Silanes
;
chemistry
10.The effect of different fabrication methods and luting cements on post retention.
Hong-mei MA ; Zhen-chun LI ; Hui LI ; Xin CHEN
West China Journal of Stomatology 2004;22(2):152-154
OBJECTIVEThis study was to compare the retention of posts fabricated by different methods and cemented with various cements in order to provide a guidance for clinical choice of post fabrication methods and luting cements.
METHODSNinety human maxillary anterior teeth were sectioned by the cementoenamel junction and post-holes were prepared. All roots were embedded in the center of plastic cylinders and paralleled with the cylinder. All samples were divided into 9 groups randomly and equally. Posts fabricated with different methods were then cemented with different luting cements. Each sample was placed into a specialized jig and mounted on a tensile testing machine with crosshead speed of 5 mm/min. Constant tensile force was applied until the post was dislodged, and the tensile force required to dislodge the cemented post was recorded.
RESULTSThe mean retention force of parapost and direct post demonstrated significantly higher than that of indirect post did (P < 0.05), but there was no significant difference between parapost and direct post(P > 0.05). The mean retention of parapost cement demonstrated significantly higher than that of ZPC and HY-Bond cement did (P < 0.05), but there was no significant difference between ZPC and HY-Bond cement (P > 0.05).
CONCLUSIONDifferent fabrication methods and luting cements significantly affect the retention of posts; and there exists an interaction between different fabricating methods and luting cements.
Cementation ; methods ; Dental Bonding ; Dental Cements ; chemistry ; Dental Prosthesis Design ; Dental Prosthesis Retention ; Dental Stress Analysis ; Dentin-Bonding Agents ; chemistry ; Glass Ionomer Cements ; chemistry ; Humans ; Materials Testing ; Post and Core Technique ; instrumentation ; Resin Cements ; chemistry ; Tensile Strength ; Zinc Phosphate Cement ; chemistry