1.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
2.In vitro cultured calculus bovis alleviates cerebral ischemia/reperfusion injury through regulating microglial polarization and inhibiting NLRP3.
Tanlu CHU ; Wei ZHANG ; Jingwen CHEN ; Zeyue PAN ; Lingfeng WANG ; Xiaoming ZHONG ; Fengmei QIU ; Zhen HUANG
Journal of Zhejiang University. Medical sciences 2025;54(3):360-371
OBJECTIVES:
To investigate the effect of in vitro cultured calculus bovis (ICCB) on cerebral ischemia/reperfusion injury (CIRI) and its mechanism.
METHODS:
A CIRI rat model and a cell model were induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats and oxygen glucose deprivation/reperfusion (OGD/R) in BV2 cells, respectively. The CIRI rat model was evaluated using the modified neurological severity score (mNSS), brain water content, and cerebral infarction volume after 1.5 h of ischemia followed by 72 h of reperfusion. Histopathological changes in the cortex and hippocampal CA1 region were observed with hematoxylin and eosin staining. Microglial polarization and NOD-like receptor thermal protein domain associated protein (NLRP) 3 inflammasome expression in the cortex were examined by immunofluorescence. BV2 cell viability was measured via MTT assay after treatment with ICCB and Nigericin. The expressions of NLRP3, ASC, caspase-1 proteins and inflammatory cytokines were detected with Western blotting in OGD/R treated BV2 cells (0.5 h OGD+24 h reperfusion) and in cells pretreated with Nigericin for 24 h.
RESULTS:
ICCB treatment significantly improved neurological function, reduced cerebral infarct volume and brain water content, and mitigated pathological damage in the cortical and hippocampal CA1 regions of rats subjected to CIRI (all P<0.05). ICCB promoted the transition of cortical microglia from M1 to M2 phenotypes and suppressed NLRP3 activation in microglial cells (all P<0.01). ICCB significantly down-regulated the expression of NLRP3, ASC, and caspase-1 proteins, and reduced the secretion of IL-18 and IL-1β in BV2 cells of OGD/R model (all P<0.01). In addition, Nigericin significantly reversed the salvage effect of ICCB on model cells (both P<0.01) and the modulation of inflammatory cytokines (P<0.05).
CONCLUSIONS
ICCB exerts a protective effect against CIRI by mitigating neuroinflammation, through the reduction of M1 microglial polarization, promotion of M2 conversion, and suppression of the NLRP3/ASC/caspase-1 signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/prevention & control*
;
Microglia/metabolism*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Brain Ischemia/metabolism*
;
Male
3.Kazinol B alleviates hypoxia/reoxygenation-induced hepatocyte injury by inhibiting the JNK signaling pathway.
Yi ZHU ; Junhui LI ; Min YANG ; Pengpeng ZHANG ; Cai LI ; Hong LIU
Journal of Central South University(Medical Sciences) 2025;50(2):181-189
OBJECTIVES:
Hypoxia/reoxygenation (H/R) injury is a critical pathological process during liver transplantation. Kazinol B has known anti-inflammatory, anti-apoptotic, and metabolic regulatory properties, but its protective mechanism in H/R-induced liver injury remains unclear. This study aims to investigate the protective effects and underlying mechanisms of Kazinol B in H/R-induced hepatocyte injury.
METHODS:
An ischemia-reperfusion model was established in healthy adult male Sprague-Dawley rats, and an in vitro H/R model was created using cultured hepatocytes. Hepatocytes were treated with Kazinol B (0-100 μmol/L) to assess cytotoxicity and protective effects. Cell viability was evaluated using the cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays. Expression of apoptosis-related proteins, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), and cleaved caspase-3, was detected by Western blotting. Reactive oxygen species (ROS) levels were assessed via fluorescence probes, and inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured using enzyme-linked immunosorbent assay (ELISA). TdT-mediated nick end labeling (TUNEL) staining was performed to assess DNA damage and apoptosis.
RESULTS:
Kazinol B had no significant effect on hepatocyte viability at 0-50 μmol/L, but showed cytotoxicity at 100 μmol/L (P<0.05). At 0.1-20 μmol/L, Kazinol B significantly improved cell survival, reduced LDH release, decreased apoptosis, and attenuated DNA damage (all P<0.001). At 10 μmol/L, Kazinol B markedly down-regulated Bad and cleaved caspase-3 (both P<0.05), and up-regulated Bcl-2 (P<0.01). It also dose-dependently reduced ROS levels and inflammatory cytokines TNF-α and IL-1β (all P<0.01). Both in vitro and in vivo, Kazinol B inhibited activation of the c-Jun N-terminal kinase (JNK) pathway without affecting extracellular regulated protein kinase (ERK) signaling (P>0.05). TUNEL staining showed that the protective effect of Kazinol B against apoptosis was partially reversed by the JNK agonist anisomycin (P<0.01).
CONCLUSIONS
Kazinol B mitigates hepatocyte injury induced by H/R by inhibiting the JNK signaling pathway. Its protective effect is associated with suppression of oxidative stress and inflammation, indicating its potential as a hepatoprotective agent.
Animals
;
Hepatocytes/pathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Reperfusion Injury/prevention & control*
;
Apoptosis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Cell Survival/drug effects*
;
Cell Hypoxia
;
Cells, Cultured
4.Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway.
Pan ZHAI ; Xiao-Hu OUYANG ; Meng-Ling YANG ; Lan LIN ; Jun-Yi LI ; Yi-Ming LI ; Xiang CHENG ; Rui ZHU ; De-Sheng HU
Journal of Integrative Medicine 2024;22(6):652-664
OBJECTIVE:
Myocardial ischemia/reperfusion injury (MIRI) is an obstacle to the success of cardiac reperfusion therapy. This study explores whether luteolin can mitigate MIRI by regulating the p53 signaling pathway.
METHODS:
Model mice were subjected to a temporary surgical ligation of the left anterior descending coronary artery, and administered luteolin. The myocardial infarct size, myocardial enzyme levels, and cardiac function were measured. Latent targets and signaling pathways were screened using network pharmacology and molecular docking. Then, proteins related to the p53 signaling pathway, apoptosis and oxidative stress were measured. Hypoxia/reoxygenation (HR)-incubated HL1 cells were used to validate the effects of luteolin in vitro. In addition, a p53 agonist and an inhibitor were used to investigate the mechanism.
RESULTS:
Luteolin reduced the myocardial infarcted size and myocardial enzymes, and restored cardiac function in MIRI mice. Network pharmacology identified p53 as a hub target. The bioinformatic analyses showed that luteolin had anti-apoptotic and anti-oxidative properties. Additionally, luteolin halted the activation of p53, and prevented both apoptosis and oxidative stress in myocardial tissue in vivo. Furthermore, luteolin inhibited cell apoptosis, JC-1 monomer formation, and reactive oxygen species elevation in HR-incubated HL1 cells in vitro. Finally, the p53 agonist NSC319726 downregulated the protective attributes of luteolin in the MIRI mouse model, and both luteolin and the p53 inhibitor pifithrin-α demonstrated a similar therapeutic effect in the MIRI mice.
CONCLUSION
Luteolin effectively treats MIRI and may ameliorate myocardial damage by regulating apoptosis and oxidative stress through its targeting of the p53 signaling pathway. Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; 22(6): 652-664.
Luteolin/pharmacology*
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Oxidative Stress/drug effects*
;
Tumor Suppressor Protein p53/genetics*
;
Apoptosis/drug effects*
;
Mice
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Myocardial Infarction/prevention & control*
;
Reactive Oxygen Species/metabolism*
5.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
6.Research advances in prevention and treatment of cerebral ischemia-reperfusion injury by targeting mitochondrial quality control.
Xuan WEI ; Ji-Yong LIU ; Wen-Li ZHANG ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2022;47(16):4305-4313
Cerebral ischemia-reperfusion injury(CIRI) is an important factor hindering the recovery of ischemic stroke patients after blood flow recanalization. Mitochondria, serving as the "energy chamber" of cells, have multiple important physiological functions, such as supplying energy, metabolizing reactive oxygen species, storing calcium, and mediating programmed cell death. During CIRI, oxidative stress, calcium overload, inflammatory response, and other factors can easily lead to neuronal mitochondrial dyshomeostasis, which is the key pathological link leading to secondary injury. As reported, the mitochondrial quality control(MQC) system, mainly including mitochondrial biosynthesis, kinetics, autophagy, and derived vesicles, is an important endogenous mechanism to maintain mitochondrial homeostasis and plays an important protective role in the damage of mitochondrial structure and function caused by CIRI. This paper reviewed the mechanism of MQC and the research progress on MQC-targeting therapy of CIRI in recent 10 years to provide theoretical references for exploring new strategies for the prevention and treatment of ischemic stroke with traditional Chinese medicine.
Brain Ischemia/prevention & control*
;
Calcium/metabolism*
;
Humans
;
Ischemic Stroke
;
Mitochondria/pathology*
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/prevention & control*
7.Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
Wen ZHANG ; Jun-Ke SONG ; Xue ZHANG ; Qi-Meng ZHOU ; Guo-Rong HE ; Xiao-Na XU ; Yan RONG ; Wen-Xia ZHOU ; Guan-Hua DU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):184-193
Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg. SAA significantly reduced the infarct volumes and neurological deficit scores. Immunohistochemical analyses showed that SAA treatments could also improve the morphology of neurons in hippocampus CA1 and CA3 regions and increase the number of neurons. Western blotting analyses showed that SAA downregulated the levels of MMP-9 and upregulated the levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) to attenuate BBB injury. SAA treatment significantly prevented MMP-9-induced degradation of ZO-1, claudin-5 and occludin proteins. SAA also prevented cerebral NF-κB p65 activation and reduced inflammation response. Our results suggested that SAA could be a promising agent to attenuate cerebral ischemia reperfusion injury through MMP-9 inhibition and anti-inflammation activities.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
enzymology
;
immunology
;
Brain
;
Brain Ischemia
;
drug therapy
;
enzymology
;
genetics
;
Caffeic Acids
;
administration & dosage
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Lactates
;
administration & dosage
;
Male
;
Matrix Metalloproteinase 9
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
enzymology
;
genetics
;
immunology
;
prevention & control
;
Salvia miltiorrhiza
;
chemistry
;
Tissue Inhibitor of Metalloproteinase-1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
immunology
8.Effect of EGCG on oxidative stress and Nrf2/HO-1 pathway in neurons exposed to oxygen-glucose deprivation/reperfusion.
Fang HE ; Yi ZHANG ; Shang CHEN ; Bei YE ; Jianzhen CHEN ; Chang LI
Journal of Central South University(Medical Sciences) 2018;43(10):1041-1047
To explore the effect of epigallocatechin gallate (EGCG) on oxidative stress and Nrf2/HO-1 pathway in neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R).
Methods: Primary cultured cerebral cortical neurons were prepared from Sprague-Dawley rats, and the OGD/R cell model was established. After pretreatment with EGCG at different concentrations (12.5, 25.0, 50.0 or 100.0 μmol/L), the neurons were subjected to OGD/R. The cell viability, reactive oxygen species (ROS) level and malondialdehyde (MDA) content were assessed after reperfusion. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured. The expression of Nrf2 protein in nucleus, HO-1 mRNA and protein were detected.
Results: OGD/R treatment reduced the cell viability, elevated ROS level and MDA content, decreased SOD and GSH-Px activities. The expression of Nrf2 protein in nucleus, HO-1 mRNA and protein were increased (P<0.01). Pretreatment with EGCG promoted the survival of neurons exposed to OGD/R, decreased ROS level and MDA content while increased SOD and GSH-Px activities. The levels of Nrf2 protein in nucleus, HO-1 mRNA and protein were upregulated (P<0.01).
Conclusion: EGCG can reduce the oxidative stress of neurons subjected to OGD/R, which may be related to activation of Nrf2/HO-1 signal pathway and enhancement of the antioxidant ability of neurons.
Animals
;
Catechin
;
analogs & derivatives
;
pharmacology
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Gene Expression Regulation
;
drug effects
;
Glucose
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
genetics
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Oxygen
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
prevention & control
9.Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats.
Jisong CHEN ; Haiwei LIU ; Xianlin ZHANG
Journal of Central South University(Medical Sciences) 2018;43(7):732-737
To explore the protective effect of rosiglitazone (RGZ) on hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms.
Methods: A rat model of ischemia-reperfusion injury was established by clamping the left and middle lobe of liver with noninvasive vascular clamp. A total of 30 Sprague-Dawley rats were randomly divided into a sham group, an HIRI group, and a RGZ group (10 rats in each group). Two hours after reperfusion, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, lactate dehydrogenase (LDH) level, malondialdehyde (MDA) content and catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were examined. HE staining was used to observe liver pathological morphology. The liver peroxisome proliferators-activated receptor γ (PPAR-γ), p-PPAR-γ, nuclear factor related factor 2 (Nrf-2), antioxidant response element (ARE), heme oxygenase 1 (HO-1) and quinone oxidoreductase-1 (NQO-1) were detected by Western blot.
Results: Compared with the HIRI group, the levels of ALT, AST, LDH and MDA in the RGZ group were significantly decreased (all P<0.05), while the levels of Nrf-2, ARE, HO-1 and NQO-1 in the RGZ group were significantly increased. The hepatic swelling, necrosis and pathological damage were decreased (all P<0.05). In addition, there was no difference in the level of PPAR-γ between the 2 groups (P>0.05).
Conclusion: PPAR-γ agonist RGZ can attenuate HIRI, which may be related to activating Nrf2/ARE signaling pathway and enhancement of antioxidant ability.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Catalase
;
blood
;
Disease Models, Animal
;
Glutathione Peroxidase
;
blood
;
L-Lactate Dehydrogenase
;
blood
;
Ligation
;
Liver
;
blood supply
;
metabolism
;
Malondialdehyde
;
blood
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
blood
;
etiology
;
prevention & control
;
Rosiglitazone
;
Superoxide Dismutase
;
blood
;
Thiazolidinediones
;
therapeutic use
10.Pim-1 Kinase Regulating Dynamics Related Protein 1 Mediates Sevoflurane Postconditioning-induced Cardioprotection.
Jin-Dong LIU ; Hui-Juan CHEN ; Da-Liang WANG ; Hui WANG ; Qian DENG ;
Chinese Medical Journal 2017;130(3):309-317
BACKGROUNDIt is well documented that sevoflurane postconditioning (SP) has a significant myocardial protection effect. However, the mechanisms underlying SP are still unclear. In the present study, we investigated the hypothesis that the Pim-1 kinase played a key role in SP-induced cardioprotection by regulating dynamics-related protein 1 (Drp1).
METHODSA Langendorff model was used in this study. Seventy-two rats were randomly assigned into six groups as follows: CON group, ischemia reperfusion (I/R) group, SP group , SP+proto-oncogene serine/threonine-protein kinase 1 (Pim-1) inhibitor II group, SP+dimethylsufoxide group, and Pim-1 inhibitor II group (n = 12, each). Hemodynamic parameters and infarct size were measured to reflect the extent of myocardial I/R injury. The expressions of Pim-1, B-cell leukemia/lymphoma 2 (Bcl-2) and cytochrome C (Cyt C) in cytoplasm and mitochondria, the Drp1 in mitochondria, and the total Drp1 and p-Drp1ser637 were measured by Western blotting. In addition, transmission electron microscope was used to observe mitochondrial morphology. The experiment began in October 2014 and continued until July 2016.
RESULTSSP improved myocardial I/R injury-induced hemodynamic parametric changes, cardiac function, and preserved mitochondrial phenotype and decreased myocardial infarct size (24.49 ± 1.72% in Sev group compared with 41.98 ± 4.37% in I/R group; P< 0.05). However, Pim-1 inhibitor II significantly (P < 0.05) abolished the protective effect of SP. Western blotting analysis demonstrated that, compared with I/R group, the expression of Pim-1 and Bcl-2 in cytoplasm and mitochondria as well as the total p-Drp1ser637 in Sev group (P < 0.05) were upregulated. Meanwhile, SP inhibited Drp1 compartmentalization to the mitochondria followed by a reduction in the release of Cyt C. Pretreatment with Pim-1 inhibitor II significantly (P < 0.05) abolished SP-induced Pim-1/p-Drp1ser637 signaling activation.
CONCLUSIONSThese findings suggested that SP could attenuate myocardial ischemia-reperfusion injury by increasing the expression of the Pim-1 kinase. Upregulation of Pim-1 might phosphorylate Drp1 and prevent extensive mitochondrial fission through Drp1 cytosolic sequestration.
Animals ; Dynamins ; metabolism ; Hemodynamics ; drug effects ; Ischemic Postconditioning ; methods ; Male ; Methyl Ethers ; therapeutic use ; Mitochondria ; drug effects ; metabolism ; Myocardial Reperfusion Injury ; metabolism ; prevention & control ; Proto-Oncogene Proteins c-pim-1 ; antagonists & inhibitors ; metabolism ; Quinazolinones ; pharmacology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail