1.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
2.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
3.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
4.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
5.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
6.Establishment of HPLC Fingerprint and Content Determination of 5 Components in Papaveris Pericarpium
Xiaoping ZHANG ; Xiaofeng SHI ; Hongyan ZHANG ; Renyuan ZHU ; Caixia ZHANG
China Pharmacy 2021;32(22):2755-2760
OBJECTIVE:To establish the fingerprint of Papaveris Pericarpium, and to determine the contents of 5 components,such as morphine ,codeine,thebaine,papaverine and narcotine. METHODS :HPLC method was adopted. The determination was performed on a Agilent ZORBAX Eclipse XDB-C18 column with mobile phase consisted methanol -sodium heptanesulfonate with gradient elution at the flow rate of 1.0 mL/min. The detection wavelength were set at 238 nm(papaverine) and 216 nm(morphine,codeine,narcotine,thebaine). The column temperature was 20 ℃,and sample size was 10 µL. HPLC fingerprints of 15 batches of Papaveris Pericarpium were established by using the Similarity Evaluation System of TCM Chromatographic Fingerprints (2012 edition),and the common peaks were determined in combination with the spectra of mixed control. The contents of morphine ,codeine,thebaine,papaverine and narcotine were determined simultaneously by the same method. The cluster analysis was conducted by using SPSS 19.0 software. RESULTS :There were 13 common peaks in 15 batches of Papaveris Pericarpium ,and the similarity was greater than 0.99. Five chromatographic peaks were identified ,which were morphine,codeine,thebaine,papaverine and narcotin. The results of cluster analysis showed that 15 batches of Papaveris Pericarpium could be clustered into two categories ,S1-S7 and S 8-S15,belonging to two cities. The linear ranges of five components were 10.21-102.10,10.43-104.30,1.54-30.70,2.36-47.28,2.32-57.90 μg/mL,respectively(all r>0.998). RSDs of precision,stability(24 h)and repeatability tests were all less than 2%. The average recoveries were 99.46%(RSD=1.08%,n= 6),97.84%(RSD=1.55%,n=6),91.10%(RSD=1.74%,n=6),96.43%(RSD=1.25%,n=6)、94.82%(RSD=1.20%,n=6), respectively. The contents of 5 components were 2.342 9-4.082 2,0.430 4-0.889 7,0.055 2-0.090 4,0.299 3-0.558 8,0.343 2- 0.656 2 mg/g. CONCLUSIONS :The established HPLC fingerprint and content determination method is simple ,feasible,sensitive and accurate. It combined with the cluster analysis could reflect characteristics and int ernal quality of chemical components in Papaveris Pericarpium . Papaveris Pericarpium in different cities possess regionalization characteristics ,but its quality isbasically stable.
7.Content Determination of 17 Kinds of Amino Acids in Sargassum and Its Adulterants
Xiaoping ZHANG ; Wen ZHANG ; Pengfei QI ; Renyuan ZHU ; Jie LI ; Caixia ZHANG ; Guoyu QIU
China Pharmacy 2020;31(4):468-472
OBJECTIVE:To establish the method for content determination of 17 kinds of amino acids in Sargassum and its adulterants,and to carry out cluster analysis ,so as to provide reference for quality control of Sargassum. METHODS :Totally of 18 batches of sample (S1-S6 as certified product ,S7-S18 as adulterants )were collected. After acid hydrolysis ,amino acids contents were detected by using automatic amino acid analyzer. The separation was performed on LCAK 06/Na sulfonic acid cation exchange resin column with mobile phase consisted of buffer-regeneration system (gradient elution )at the flow rate of 0.45 mL/min (elution pump )and 0.25 mL/min(derivative pump ). The detection wavelengths were set at 440 nm(proline)and 570 nm(other amino acids ),and the sample size volume was 50 μL. PASW Statistics 18.0 software was used ,and cluster analysis was conducted by using group connection method of cluster analysis with “square Euclidean distance ”as the measurement standard. RESULTS :17 kinds of amino acids were well separated without interference from blank sample. The linear relationship between mass concentration and peak area was good (all r were over 0.998),and the upper and lower limits of the linear range were 48.06 μg/L (cystine)and 1.501 μg/L(glycine),respectively;RSDs of precision ,reproducibility and stability tests were lower than 2%. The average recoveries were between 90.60%-101.56%(RSDs were 0.88%-2.15%,n=6). 17 kinds of amino acids were detected in Sargassum and its adulterants ,among which the contents of glutamic acid ,aspartic acid ,leucine,alanine,glycine and valine were relatively high . Results of cluster analysis showed that 18 batches of sample were clustered into 4 categories,i.e. S 1-S6 into one category;S7-S9 into one category ;S10-S12,S16-S18 into one category ;S13-S15 into one category ;which was consistent with the identification result of Sargassum and its adulterants . CONCLUSIONS :The method is simple , rapid, accurate and reproducible,and can be used for the quantitative analysis and identification of amino acids in Sargassum and adulterants.
8.Effects of probiotics on the intestinal microecological abnormalities and colorectal cancer of mice induced by high-fat diet
Jide HE ; Cheng KONG ; Renyuan GAO ; Fang YIN ; Yang ZHANG ; Huanlong QIN
Chinese Journal of Gastrointestinal Surgery 2020;23(Z1):77-85
Objective:To establish the mice colorectal cancer (CRC) model induced by AOM/DSS with the intervention of high fat diet and probiotics, and to explore the potential mechanism of probiotics intervention in regulating intestinal flora disturbance and antitumor efficiency.Methods:Forty 8-week-old male C57BL/6J mice were randomly divided into 4 groups with 10 mice in each group: HFD group, HDF with probiotics intervention (HFD+P) group, normal diet (ND) group, normal diet with probiotics intervention (ND+P) group. The probiotic groups were administered with probiotics preparation by gavage. During the experiment, AOM/DSS was used to induce mouse colorectal cancer model. The mouse body weight was regularly recorded and the body status was evaluated weekly. High-throughput 16S rDNA sequencing was used to analyze the changes of fecal flora in bacterial structure before and after cancer induction. At the end of the experiment, intestinal tissues of mice were collected and the epididymis adipose mass (EAM) and tumor burden were recorded. The Alpha diversity index was used to analyze the abundance and diversity of the intestinal flora (higher chaol index means higher abundance of bacteria and greater Simpson index means lower diversity in flora structure). The Beta diversity index was used to analyze the significance of the difference in the distribution of intestinal flora among the four groups (When R>0, the difference in the distribution of bacteria among the groups is greater than the difference within the group).Results:After 15 weeks of experiment, the body weight of mice in HFD group, HFD+P group, ND group and ND+P group was (33.70±0.52) g, (28.70±0.32) g, (25.90±0.34) g and (25.60±0.40) g, whose difference was statistically significant ( F=700.89, P<0.01). The body weight of HFD group was higher than that of ND group and HFD+P group while the body weight of HFD+P group was still higher than that of ND group, and the differences were statistically significant (all P<0.017). The average EAM of HFD group, HFD+P group, ND group and ND+P group was (1.36±0.15) g, (0.67±0.08) g, (0.58±0.10) g and (0.54±0.05) g, whose difference was statistically significant ( F=114.03, P<0.01). Pairwise comparisons showed that EAM in HFD group was higher than that in ND group and HFD+P group respectively, with statistically significant difference (both P<0.01), while average EAM of HFD+P group was similar to ND group ( P=0.09). Under the diet intervention, the Chao1 index of HFD group, HFD+P group, ND group and ND+P group was 217.62, 235.32, 301.51 and 305.71 respectively, and the Simpson index was 0.93, 0.89, 0.91 and 0.90. At the same time, the Anosim analysis of Beta diversity analysis showed that the difference in the flora distribution among four groups was greater than the difference with in each group with statistically significant difference ( R=0.655, P=0.001). Species abundance analysis revealed that, compared with ND group, at phylum level, HFD group had a higher proportion of Bacteroides phylum and Firmicutes phylum in the intestinal flora and lower proportion of Verrucomicrobia; at genus level, the proportion of Bacteroides and Oscillibacter in HFD group was higher while the proportion of Akkermansia and Alloprevotella was lower. After the intervention of probiotics, the flora mentioned above was improved significantly except for Alloprevotella. The average number of tumor in HFD group, HFD+P group, ND group and ND+P group was 4.63±1.19, 2.33±0.52, 2.56±0.73 and 2.38±0.52 with statistically significant difference ( F=14.92, P<0.01). Conclusion:Probiotics therapy can reduce obesity and flora imbalance caused by HFD and reduce the incidence of CRC by regulating intestinal flora disturbance.
9.Effects of probiotics on the intestinal microecological abnormalities and colorectal cancer of mice induced by high-fat diet
Jide HE ; Cheng KONG ; Renyuan GAO ; Fang YIN ; Yang ZHANG ; Huanlong QIN
Chinese Journal of Gastrointestinal Surgery 2020;23(Z1):77-85
Objective:To establish the mice colorectal cancer (CRC) model induced by AOM/DSS with the intervention of high fat diet and probiotics, and to explore the potential mechanism of probiotics intervention in regulating intestinal flora disturbance and antitumor efficiency.Methods:Forty 8-week-old male C57BL/6J mice were randomly divided into 4 groups with 10 mice in each group: HFD group, HDF with probiotics intervention (HFD+P) group, normal diet (ND) group, normal diet with probiotics intervention (ND+P) group. The probiotic groups were administered with probiotics preparation by gavage. During the experiment, AOM/DSS was used to induce mouse colorectal cancer model. The mouse body weight was regularly recorded and the body status was evaluated weekly. High-throughput 16S rDNA sequencing was used to analyze the changes of fecal flora in bacterial structure before and after cancer induction. At the end of the experiment, intestinal tissues of mice were collected and the epididymis adipose mass (EAM) and tumor burden were recorded. The Alpha diversity index was used to analyze the abundance and diversity of the intestinal flora (higher chaol index means higher abundance of bacteria and greater Simpson index means lower diversity in flora structure). The Beta diversity index was used to analyze the significance of the difference in the distribution of intestinal flora among the four groups (When R>0, the difference in the distribution of bacteria among the groups is greater than the difference within the group).Results:After 15 weeks of experiment, the body weight of mice in HFD group, HFD+P group, ND group and ND+P group was (33.70±0.52) g, (28.70±0.32) g, (25.90±0.34) g and (25.60±0.40) g, whose difference was statistically significant ( F=700.89, P<0.01). The body weight of HFD group was higher than that of ND group and HFD+P group while the body weight of HFD+P group was still higher than that of ND group, and the differences were statistically significant (all P<0.017). The average EAM of HFD group, HFD+P group, ND group and ND+P group was (1.36±0.15) g, (0.67±0.08) g, (0.58±0.10) g and (0.54±0.05) g, whose difference was statistically significant ( F=114.03, P<0.01). Pairwise comparisons showed that EAM in HFD group was higher than that in ND group and HFD+P group respectively, with statistically significant difference (both P<0.01), while average EAM of HFD+P group was similar to ND group ( P=0.09). Under the diet intervention, the Chao1 index of HFD group, HFD+P group, ND group and ND+P group was 217.62, 235.32, 301.51 and 305.71 respectively, and the Simpson index was 0.93, 0.89, 0.91 and 0.90. At the same time, the Anosim analysis of Beta diversity analysis showed that the difference in the flora distribution among four groups was greater than the difference with in each group with statistically significant difference ( R=0.655, P=0.001). Species abundance analysis revealed that, compared with ND group, at phylum level, HFD group had a higher proportion of Bacteroides phylum and Firmicutes phylum in the intestinal flora and lower proportion of Verrucomicrobia; at genus level, the proportion of Bacteroides and Oscillibacter in HFD group was higher while the proportion of Akkermansia and Alloprevotella was lower. After the intervention of probiotics, the flora mentioned above was improved significantly except for Alloprevotella. The average number of tumor in HFD group, HFD+P group, ND group and ND+P group was 4.63±1.19, 2.33±0.52, 2.56±0.73 and 2.38±0.52 with statistically significant difference ( F=14.92, P<0.01). Conclusion:Probiotics therapy can reduce obesity and flora imbalance caused by HFD and reduce the incidence of CRC by regulating intestinal flora disturbance.
10.Investigation Report of Chinese Medicinal Materials Artificial Planting in Lanzhou City
Renyuan ZHU ; Aihua DING ; Yun LI ; Guoyu QIU ; Hui DING ; Yan LI ; Caixia ZHANG ; Guangrui LIU
China Pharmacy 2019;30(11):1535-1540
OBJECTIVE: To provide reference for promoting large-scale, standardized and high-quality planting of Chinese medicinal materials. METHODS: Through the communication by phone with the agriculture bureau of each district and county, the contact with the relevant township government and the field visit investigation during Jun. 2013-Dec. 2018 by Lanzhou institute for food and drug control, variety, area, yield and output value, cultivation techniques and processing methods of Chinese medicinal materials in the planting area of Lanzhou were investigated and statistically analyzed. The advantages and problems were analyzed, and reasonable suggestions for planting Chinese medicinal materials were put forward. RESULTS & CONCLUSIONS: In 2018, artificial planting of Chinese medicinal materials in lanzhou has a certain scale, with 21 artificial planting varieties, a total planting area of about 510 000 mu, an annual output of 170 000 tons, an annual production value of over 1.7 billion yuan. Cultivation techniques mainly include seedling transplanting, mulching or direct seeding, while drying is the main processing method. Artificial planting of Chinese medicinal materials in Lanzhou has a certain scale and prominent characteristic varieties; authenticity is guaranteed, and the combination of Chinese medicinal materials planting and tourism drives economic development. However, there are still some problems, such as a certain distance from the development of industrialization, variety degradation, backward basic research, serious natural disasters. It is suggested to strengthen its propaganda and expand its advantages, at the same time, enhance government support, develop and construct planting bases of Chinese medicinal materials, strengthen the awareness of good agricultural practice (GAP), strengthen scientific research strengeh, explore breeding techniques of fine varieties of Chinese medicinal materials, develop insurance of Chinese medicinal materials, and guarantee the development of planting industry so as to promote large-scale, standardized and high-quality planting of Chinese medicinal materials.

Result Analysis
Print
Save
E-mail