1.Biofilm forming ability of intermediate and saprophytic Leptospira on abiotic and biotic surfaces
Kasing Apun ; Jennifer Jalan ; Chai Fung Pui ; Lesley Maurice Bilung ; Hashimatul Fatma Hashim ; Anisa Aina Nadiah Md Ahsan ; Rennielyn Rupert
Malaysian Journal of Microbiology 2018;14(4):313-319
Aims:
Leptospira spp. has the ability to develop biofilm communities and this attribute is an essential factor to leptospiral pathogenesis. This study aims to assess and quantify the biofilm forming ability of intermediate and saprophytic Leptospira strains.
Methodology and results:
The biofilm assay was quantified on microtitre polystyrene plates (abiotic) and wood chips (Jelutong Paya hardwood) over a duration of 11 days. Phase contrast light microscope was used to assess the structure of the on the surface. The biofilm production on wood chips surface were approximately one times higher than on polystyrene plate surface indicating Leptospira strains were capable of forming higher quantity of biofilm on biotic surface compared to abiotic surface by both intermediate and saprophytic Leptospira. A significant difference (p<0.05) exists in biofilms produced by Leptospira on wood surface which formed more biofilm than on polystyrene surface. The strongest biofilm producer is intermediate strain G14 with OD600 of 2.283±0.180 and OD600 of 2.333±0.037, on polystyrene and wood surface, respectively. Visualisation of biofilm by phase-contrast microscopy of two representative strains correlated with the OD values and the colour intensity of stained microtitre plates and wood surfaces. The biofilm formed comprises of a three-step process are adherence (1 th to 24 th h), maturation (6t h to 7 th day) and detachment (9 th to 11 th day) of biofilms.
Conclusion, significance and impact of study
The contact time of intermediate pathogenic strains was faster compared to saprophytic strain, indicating the biofilm forming ability is related to the level of pathogenicity of Leptospira strains.
2.Characterization of persistent marine bacterial community profiles isolated from long-term Kappaphycus alvarezii cultures in a closed cultivation system using 16S rDNA analysis
Rennielyn Rupert ; Kenneth Francis Rodrigues ; Harry Lye Hin Chong ; Nur Athirah Yusof ; Wilson Thau Lym Yong
Malaysian Journal of Microbiology 2023;19(no.6):693-704
Aims:
The study aims to investigate the bacterial community profiles on the surface of red algae (Kappaphycus
alvarezii) and persistent bacteria that can adapt to long-term cultivation in a closed circulation system.
Methodology and results:
Kappaphycus alvarezii explants were cultured in a controlled laboratory setting for 30 days to investigate related bacterial adaptability to controlled culture conditions. Bacterial isolates associated with seedlings were subjected to 16S rDNA amplification and sequencing, followed by the construction of a phylogenetic tree using MEGA X software. The results show distinct microbial composition between the first and 30th days. The derived phylogenetic tree features three dominant phyla: Proteobacteria (Vibrio and Thalassospira), Pseudomonadota (Pseudoalteromonas, Alteromonas, Grimontia, Ruegeria, Phaebacter and Bacterioplanes) and Firmicutes (Bacillus). A comparative examination of these two bacterial groups (day 1 and day 30) reveals evidence of persistent marine bacteria, such as the genera Vibrio, Pseudoalteromonas, Alteromonas, Phaaebacter and Bacterioplanes, that successfully adapt to long-term cultivation within closed circulation systems.
Conclusion, significance and impact of study
The findings of this study contribute to the understanding of bacterial ecology in the controlled red algae cultivation environment and also provide valuable insights into the optimization of an ideal closed cultivation system for sustainable K. alvarezii production, benefiting the seaweed industry.