1.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
2.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
3.Urban-rural disparities in mortality due to stroke subtypes in China and its provinces, 2015-2020.
Yi REN ; Jia YANG ; Peng YIN ; Wei LIU ; Zheng LONG ; Chen ZHANG ; Zixin WANG ; Haijie LIU ; Maigeng ZHOU ; Qingfeng MA ; Junwei HAO
Chinese Medical Journal 2025;138(11):1345-1354
BACKGROUND:
Death burden of stroke is severe with over one-third rural residents in China, but there is still a lack of specific national and high-quality reports on the urban-rural differences in stroke burden, especially for subtypes. We aimed to update the understanding of urban-rural differences in stroke deaths.
METHODS:
This is a descriptive observational study. Data from the national mortality surveillance system, which covers 323.8 million with 605 disease surveillance points (DSPs) across all 31 provinces, municipalities, and autonomous regions in China. All deaths from stroke as the underlying cause from 2015 to 2020 according to DSPs. Crude mortality rate and age-standardized mortality rate (ASMR) were estimated through DSPs. Average annual percentage change was used to explain the change in mortality rate.
RESULTS:
From 2015 to 2020, the majority of deaths from all stroke subtypes occurred in rural areas. There were significant differences between the changes of urban and rural ASMRs. On the whole, the changes in urban areas were evidently better, and the ASMR differences were basically expanding. Stroke ASMR in urban China decreased by 15.5%. The rural ASMR of ischemic stroke increased by 12.9%. The rural and urban ASMRs of intracerebral hemorrhage decreased by 24.9% and 27.4%, and those of subarachnoid hemorrhage decreased by 29.5% and 40.4%, respectively. The highest ASMRs of all stroke subtypes and the increasing trend of ischemic stroke ASMR make rural males the focus of stroke management.
CONCLUSIONS
The death burden of stroke varies greatly between urban and rural China. Rural residents face unique challenges.
Humans
;
China/epidemiology*
;
Stroke/mortality*
;
Rural Population/statistics & numerical data*
;
Male
;
Female
;
Urban Population/statistics & numerical data*
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Adult
4.Research progress on the role of dopamine system in regulating hippocampal related brain functions.
Jing REN ; Wei-Yi MO ; Ling WANG ; Guang-Jian NI ; Jia-Jia YANG
Acta Physiologica Sinica 2025;77(5):893-904
Dopamine, as a catecholamine neurotransmitter widely distributed in the central nervous system, is involved in physiological functions such as motivation, arousal, reinforcement, and movement through various dopamine signaling pathways. The hippocampus receives dopaminergic neuron projections from regions such as the ventral tegmental area, locus coeruleus, and substantia nigra. Through D1-like and D2-like receptors, dopamine exerts significant regulatory effects such as spatial navigation, episodic memory, fear, anxiety, and reward. This review mainly summarizes the research progress on the functions of dopamine in the hippocampus from aspects including the sources of dopamine, receptor distribution and function, and the association of hippocampal dopamine system dysregulation with neurodegenerative diseases. The aim is to provide insights into the involvement of the dopamine system in hippocampal functions and the diagnosis and treatment of related diseases.
Hippocampus/physiology*
;
Dopamine/physiology*
;
Humans
;
Animals
;
Receptors, Dopamine D2/physiology*
;
Memory/physiology*
;
Signal Transduction/physiology*
;
Neurodegenerative Diseases/physiopathology*
5.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
6.Interactions between Xuefu Zhuyu Decoction and atorvastatin based on human intestinal cell models and in vivo pharmacokinetics in rats.
Xiang LI ; Huan YI ; Chang-Ying REN ; Hao-Hao GUO ; Hong-Tian YANG ; Ying ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3159-3167
The study aims to explore the herb-drug interaction between Xuefu Zhuyu Decoction(XFZY) and atorvastatin(AT). Reverse transcription polymerase chain reaction(RT-PCR) was used to analyze the transcription levels of proteins related to drug metabolism and transport in LS174T cells, detect the intracellular drug uptake under various substrate concentrations and incubation time, and optimize the model reaction conditions of transporter multidrug resistance protein 1(MDR1)-specific probe Rhodamine 123 and AT to establish a cell model for investigating the human intestinal drug interaction. The cell counting kit-8(CCK-8) method was adopted to evaluate the cytotoxicity of XFZY on LS174T cells. After a single and continuous 48 h culture with XFZY, AT or Rhodamine 123 was added for co-incubation. The effect and mechanism of XFZY on human intestinal absorption of AT were analyzed by measuring the intracellular drug concentrations and transcription levels of related transporters and metabolic enzymes. The results of in vitro experiments show that a single co-culture with a high concentration of XFZY significantly increases the intracellular concentrations of Rhodamine 123 and AT. A high concentration of XFZY co-culture for 48 h increases the AT uptake level, significantly induces the CYP3A4 and UGT1A1 gene expression levels, and inhibits the OATP2B1 gene expression level. To compare with the evaluation results of the in vitro human cell model, the pharmacokinetic experiment of XFZY combined with AT was carried out in rats. Sprague-Dawley(SD) rats were randomly divided into a blank control group and an XFZY group. After 14 days of continuous intragastric administration, AT was given in combination. The liquid chromatography-mass spectrometry(LC-MS)/MS method was used to detect the concentrations of AT and metabolites 2-hydroxyatorvastatin acid(2-HAT), 4-hydroxyatorvastatin acid(4-HAT), atorvastatin lactone(ATL), 2-hydroxyatorvastatin lactone(2-HATL), and 4-hydroxyatorvastatin lactone(4-HATL) in plasma samples, and the pharmacokinetic parameters were calculated. Pharmacokinetic analysis in rats shows that continuous administration of XFZY does not significantly change the pharmacokinetic characteristics of AT in rats, but the AUC_(0-6 h) values of AT and metabolites 2-HAT, 4-HAT, and 2-HATL increase by 21.37%, 14.94%, 12.42%, and 6.68%, respectively. The metabolic rate of the main metabolites shows a downward trend. The study indicates that administration combined with XFZY can significantly increase the uptake level of AT in human intestinal cells and increase the exposure level of AT and main metabolites in rats to varying degrees. The mechanism may be mainly due to the inhibition of intestinal MDR1 transport activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atorvastatin/administration & dosage*
;
Humans
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Intestines/cytology*
;
Intestinal Mucosa/metabolism*
;
Herb-Drug Interactions
;
Cytochrome P-450 CYP3A/metabolism*
;
Intestinal Absorption/drug effects*
7.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
8.Comparison of the early and medium term efficacy of oblique lateral interbody fusion combined lateral fixation and transforaminal lumbar interbody fusion in lumbar spinal stenosis.
Ren-Jie LI ; Wei-Min JIANG ; Tang-Yi-Heng CHEN ; Sen YANG ; Yi-Jie LIU
China Journal of Orthopaedics and Traumatology 2025;38(5):465-472
OBJECTIVE:
To compare the clinical efficacy of oblique lateral interbody fusion(OLIF) combined with lateral fixation and transforaminal lumbar interbody fusion(TLIF) in patients with lumbar spinal stenosis.
METHODS:
Totally 47 patients with lumbar stenosis from November 2018 to December 2021 were analyzed retrospectively and were divided into two groups according to the surgical methods. Among them, 21 cases underwent oblique lumbar interbody fusion supplemental anterolateral screw and rod instrumentation, including 5 males and 16 females, with a mean age of (68.19±6.13) years old ranging 55 to 74 years; the other 26 cases underwent posterior pedicle screw fixation and reduction were recorded, including 8 males and 18 females with a mean age of (65.35±7.64) years old ranging 54 to 78 years. Visual analogue scale(VAS) of pain was recorded to evaluate the degree of low back pain and lower extremity pain. The radiographic parameters were collected to evaluate the efficacy of two approaches including disc height, foraminal height, canal sagittal diameter and cross-sectional area.
RESULTS:
All operations were completed successfully. The wound healed normally and bone fusion was obtained in the last final follow up. No serious complication was occurred in both groups. One case of dural tear occurred in direct compression group. Four cases of left thigh weakness and pain were recorded in indirect decompression group. The average postoperative follow-up was(21.69±4.37)months in direct compression group, while(20.43±4.80)months in another group. There were no significant difference in bone density, body mass index(BMI), hospital stay, Cobb angel(P>0.05). The differences in intra-operative blood loss, operation time, disc height, foraminal height between two groups were statistically significant(P<0.05). The area and sagittal diameter of the spinal canal in the two groups were significantly improved after surgery(P<0.05).
CONCLUSION
Both two fusion methods have achieved good clinical results in the treatment of lumbar spinal stenosis, with the advantages of good stability, fast recovery and high fusion rate. Compared with TLIF, the advantage of OLIF has greater advantages in less bleeding and less trauma.
Humans
;
Male
;
Female
;
Spinal Stenosis/surgery*
;
Spinal Fusion/methods*
;
Aged
;
Middle Aged
;
Lumbar Vertebrae/surgery*
;
Retrospective Studies
;
Treatment Outcome
9.Clinical study on the treatment of traumatic osteomyelitis of the upper tibia by membrane-induced technique combined with gastrocnemius muscle flap transposition.
Yi-Yang LIU ; Yi-Hang LU ; Qiong-Lin CHEN ; Bing-Yuan LIN ; Hai-Yong REN ; Kai HUANG ; Yang ZHANG ; Qiao-Feng GUO
China Journal of Orthopaedics and Traumatology 2025;38(9):937-944
OBJECTIVE:
To explore clinical efficacy of membrane-induced technique combined with gastrocnemius muscle flap transposition in treating traumatic osteomyelitis of the upper tibia.
METHODS:
A retrospective analysis was conducted on 7 patients with traumatic osteomyelitis of the upper tibia who were treated with membrane-induced technique combined with gastrocnemius muscle flap transposition from January 2022 to December 2023. Among them, there were 4 males and 3 females; aged from 29 to 57 years old; 4 patients were treated after open fracture, 2 patients were treated after closed fracture, and 1 patient was treated after scalding; the courses of disease ranges from 2 weeks to 8 years; sinus tracts were present in all patients, and the lesion range of the tibia ranged from 5 to 9 cm. The results of deep tissue bacterial culture showed that 2 patients were negative, 3 patients were staphylococcus aureus, 1 patient was methicillin-resistant staphylococcus aureus, and 1 patient was pseudomonas aeruginosa and 1 patient was klebsiella pneumoniae. After debridement, the range of bone defect ranged from 8 to 12 cm, and the cortical defect accounted for approximately 30% of the circumference. The area of soft tissue defect ranged from 8.0 cm×2.0 cm to 10.0 cm×6.0 cm. At the first stage, vancomycin-loaded/meropenem/gentamicin-loaded bone cement was implanted. The gastrocnemius muscle flap was repositioned to cover the wound surface and free skin grafting was performed. After an interval of 7 to 10 weeks, the stageⅡsurgery was performed to remove bone cement. Autologous iliac bone mixed with vancomycin/gentamicin and calcium sulfate artificial bone was transplanted, and the wound was sutured. One patient retained the original internal plants, one patient removed the internal plants and replaced them with steel plate external fixation, one patient replaced the internal plants and added steel plate external fixation, and three patients were simply fixed with steel plate external fixation. One year after operation, the recovery of knee joint and ankle joint functions was evaluated by using Hospital for Special Surgery (HSS) knee joint score and Kofoed ankle joint function score respectively.
RESULTS:
All patients had their wounds closed simultaneously with bone cement implantation and healed well. All patients were followed up for 12 to 17 months after operation, and satisfactory bone healing was achieved at 6 months after stageⅡsurgery. Twelve months after operation, all patients had good bone healing without obvious limping was observed when walking. At 12 months after operation HSS knee joint score ranged from 93 to 100 points, and Kofoed ankle function score ranged from 96 to 100 points.
CONCLUSION
For traumatic osteomyelitis of the upper tibia, a staged treatment plan combining membrane-induced technique and gastrocnemius flap transposition on the basis of thorough debridement could safely cover the wound surface, effectively control bone infection and achieve satisfactory bone healing, without adverse effects on limb function.
Humans
;
Male
;
Female
;
Middle Aged
;
Osteomyelitis/surgery*
;
Adult
;
Surgical Flaps
;
Retrospective Studies
;
Tibia/injuries*
;
Muscle, Skeletal/surgery*
10.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice

Result Analysis
Print
Save
E-mail