1.ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study.
Junhao ZHANG ; Ruiqing LIU ; Di HAO ; Guangye TIAN ; Shiwei ZHANG ; Sen ZHANG ; Yitong ZANG ; Kai PANG ; Xuhua HU ; Keyu REN ; Mingjuan CUI ; Shuhao LIU ; Jinhui WU ; Quan WANG ; Bo FENG ; Weidong TONG ; Yingchi YANG ; Guiying WANG ; Yun LU
Chinese Medical Journal 2025;138(21):2793-2803
BACKGROUND:
Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment.
METHODS:
In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model.
RESULTS:
The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set.
CONCLUSION
The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
Humans
;
Rectal Neoplasms/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Middle Aged
;
Neoadjuvant Therapy/methods*
;
Aged
;
Adult
;
Chemoradiotherapy/methods*
;
Endoscopy/methods*
;
Treatment Outcome
2.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
3.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice
4.Hepatitis C virus infection:surveillance report from China Healthcare-as-sociated Infection Surveillance System in 2020
Xi-Mao WEN ; Nan REN ; Fu-Qin LI ; Rong ZHAN ; Xu FANG ; Qing-Lan MENG ; Huai YANG ; Wei-Guang LI ; Ding LIU ; Feng-Ling GUO ; Shu-Ming XIANYU ; Xiao-Quan LAI ; Chong-Jie PANG ; Xun HUANG ; An-Hua WU
Chinese Journal of Infection Control 2024;23(1):1-8
Objective To investigate the infection status and changing trend of hepatitis C virus(HCV)infection in hospitalized patients in medical institutions,and provide reference for formulating HCV infection prevention and control strategies.Methods HCV infection surveillance results from cross-sectional survey data reported to China Healthcare-associated Infection(HAI)Surveillance System in 2020 were summarized and analyzed,HCV positive was serum anti-HCV positive or HCV RNA positive,survey result was compared with the survey results from 2003.Results In 2020,1 071 368 inpatients in 1 573 hospitals were surveyed,738 535 of whom underwent HCV test,4 014 patients were infected with HCV,with a detection rate of 68.93%and a HCV positive rate of 0.54%.The positive rate of HCV in male and female patients were 0.60%and 0.48%,respectively,with a statistically sig-nificant difference(x2=47.18,P<0.001).The HCV positive rate in the 50-<60 age group was the highest(0.76%),followed by the 40-<50 age group(0.71%).Difference among all age groups was statistically signifi-cant(x2=696.74,P<0.001).In 2003,91 113 inpatients were surveyed.35 145 of whom underwent HCV test,resulting in a detection rate of 38.57%;775 patients were infected with HCV,with a positive rate of 2.21%.In 2020,HCV positive rates in hospitals of different scales were 0.46%-0.63%,with the highest in hospital with bed numbers ranging 600-899.Patients'HCV positive rates in hospitals of different scales was statistically signifi-cant(X2=35.34,P<0.001).In 2020,12 provinces/municipalities had over 10 000 patients underwent HCV-rela-ted test,and HCV positive rates ranged 0.19%-0.81%,with the highest rate from Hainan Province.HCV posi-tive rates in different departments were 0.06%-0.82%,with the lowest positive rate in the department of pedia-trics and the highest in the department of internal medicine.In 2003 and 2020,HCV positive rates in the depart-ment of infectious diseases were the highest,being 7.95%and 3.48%,respectively.Followed by departments of orthopedics(7.72%),gastroenterology(3.77%),nephrology(3.57%)and general intensive care unit(ICU,3.10%)in 2003,as well as departments of gastroenterology(1.35%),nephrology(1.18%),endocrinology(0.91%),and general intensive care unit(ICU,0.79%)in 2020.Conclusion Compared with 2003,HCV positive rate decreased significantly in 2020.HCV infected patients were mainly from the department of infectious diseases,followed by departments of gastroenterology,nephrology and general ICU.HCV infection positive rate varies with gender,age,and region.
5.Multi-parametric MRI combined with 68Ga-PSMA PET/CT for the diagnosis of clinically significant prostate cancer
Xiaoli MENG ; Fei KANG ; Zhiyong QUAN ; Mingru ZHANG ; Min WANG ; Tingting HAN ; Jun SHU ; Jing REN ; Weidong YANG ; Jing WANG
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(1):25-29
Objective:To explore whether multi-parametric MRI (mpMRI) combined with 68Ga-prostate specific membrane antigen (PSMA) PET/CT can improve the detection efficiency of clinically significant prostate cancer (csPCa). Methods:Clinical and imaging data of 152 patients (age (68.5±8.5) years) who underwent mpMRI and 68Ga-PSMA PET/CT examination for suspected prostate cancer in the First Affiliated Hospital of the Air Force Medical University from January 2021 to November 2022 were retrospectively analyzed, with the histopathological results from transrectal ultrasound guided biopsy as reference. Lesions with Gleason scores (GS) ≥3+ 4 from the biopsy were diagnosed with csPCa, and lesions with negative biopsy or GS 6 were diagnosed with non-csPCa. MpMRI was evaluated independently by two radiologists according to the Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. The radioactive uptake of 68Ga-PSMA PET/CT in prostate lesions was evaluated by SUV max. The independent-sample t test, Mann-Whitney U test and χ2 test were used to compare differences between the two groups, and then multivariate logistic regression analysis was performed. ROC curves analysis was used to analyze the diagnostic efficacies of individual and combined factors and Delong test was used. Results:There were 85 csPCa and 67 non-csPCa confirmed. Prostate specific antigen (PSA), PI-RADS score and SUV max were significantly different between the csPCa group and the non-csPCa group ( χ2=68.06, U values: -7.66, -8.98, all P<0.001). Multivariate logistic regression analysis indicated that PI-RADS score (odds ratio ( OR)=3.424, 95% CI: 1.651-7.100) and SUV max ( OR=1.931, 95% CI: 1.403-2.658) were independent predictors of csPCa (both P<0.001). ROC curves analysis revealed that the cut-off value for diagnosing csPCa was 4 for PI-RADS score and 5.6 for SUV max. The accuracy of mpMRI and PET/CT alone in csPCa diagnosis was 80%(122/152) (AUC of 0.789(95% CI: 0.711-0.866) with the sensitivity and specificity of 91%(77/85) and 67%(45/67)), and 87%(132/152) (AUC of 0.876(95% CI: 0.817-0.936) with the sensitivity and specificity of 81%(69/85) and 94%(63/67)), respectively. Several joint models incorporating 68Ga-PSMA PET/CT with mpMRI data were investigated, the model of PI-RADS 5 or PI-RADS 3-4 and SUV max>5.6 showed better performance than mpMRI and PET/CT alone and other joint models ( z values: 2.01-3.64, all P<0.05), with the accuracy of 91%(138/152) (AUC of 0.910(95% CI: 0.857-0.962) with the sensitivity and specificity of 89%(76/85) and 93%(62/67)). Conclusion:MpMRI combined with 68Ga-PSMA PET/CT can significantly improve the detection efficiency of csPCa, with the principal effect being improved in risk stratification of PI-RADS 3-4 lesions in mpMRI.
6.Progress in delivering biotechnology drugs on microneedles
Han LIU ; Guo-zhong YANG ; Wan-ren DU ; Suo-hui ZHANG ; Ze-quan ZHOU ; Yun-hua GAO
Acta Pharmaceutica Sinica 2024;59(10):2751-2762
As a new transdermal drug delivery system, microneedles can significantly improve skin permeability, enhance drug transdermal delivery, and demonstrate unique advantages in breaking stratum corneum barrier of skin. This feature enables microneedles to demonstrate enormous potential in delivering biotechnology drugs. The traditional delivery method for biotechnology drugs is mainly injection, which brings problems such as pain and skin redness to patients, leading to poor patient compliance. In addition, the production, transportation, and storage of biotechnology drugs require strict low-temperature conditions to maintain their activity and increase cost output. Microneedles, by contrast, have many benefits, providing new avenues and solutions for biomolecular delivery. Accordingly, this review introduced the microneedle drug delivery system for delivery biotechnology drugs, and summarized the research progress of microneedle systems in biotechnology drugs.
7.Analysis of specimen quality of intersphincteric resection for rectal cancer in the Chinese Transanal Total Mesorectal Excision Registry Collaborative database: a nationwide registered study
Pengyu WEI ; Mingyang REN ; Quan WANG ; Hong ZHANG ; Chienchih CHEN ; Qing XU ; Yi XIAO ; Dan MA ; Zhicong FU ; Dehai XIONG ; Yang LI ; Hongwei YAO ; Zhongtao ZHANG
Chinese Journal of Digestive Surgery 2024;23(6):819-825
Objective:To investigate the specimen quality of intersphincteric resection with transabdominal transanal mixed approach for rectal cancer in the Chinese Transanal Total Mesorectal Excision Registry Collaborative (CTRC) database.Methods:The retrospective case-control study was conducted. Based on the concept of real-world research, the clinicopathological data of 281 pati-ents with rectal cancer in the CTRC database who underwent intersphincteric resection with trans-abdominal transanal mixed approach in 19 medical centers, including the Beijing Friendship Hospital of Capital Medical University et al, from November 15,2017 to December 31,2023 were collected. There were 196 males and 85 females, aged 61(range, 27-87)years. Observation indicators: (1) preoperative examinations; (2) neoadjuvant therapy; (3) postoperative examinations; (4) analysis of influencing factors for positive circumferential margin in surgical specimen of intersphincteric resec-tion for rectal cancer. Measurement data with normal distribution were represented as Mean±SD. Measurement data with skewed distribution were represented as M(range). Count data were described as absolute numbers or percentages. The chi-square test was used for univariate analysis. Logistic regression model was used for multivariate analysis. Results:(1) Preoperative examinations. Of the 281 patients, 234 cases underwent preoperative pelvic magnetic resonance imaging (MRI) examina-tion. There were 2 cases in clinical stage T0, 3 cases in clinical stage T1, 58 cases in clinical stage T2, 137 cases in clinical stage T3, 24 cases in clinical stage T4, 3 cases in clinical stage Tx, 7 cases missing clinical T staging data. There were 87 cases in clinical stage N0, 68 cases in clinical stage N1, 60 cases in clinical stage N2, 9 cases in clinical stage Nx, 10 cases missing clinical N staging data. There were 30 cases with mesorectal fascia invasion, 53 cases with extramural venous invasion. The distance from lower margin of tumor to anal margin was 41.9(range, 1.0-80.0)mm. (2) Neoadjuvant therapy. Of the 281 patients, 125 cases underwent neoadjuvant therapy, including 39 cases receiving chemo-therapy alone, 6 cases receiving short-course simultaneous chemoradiotherapy, 5 cases receiving short-course simultaneous chemoradiotherapy and delayed surgery, 48 cases receiving long-course simultaneous chemoradiotherapy, 2 cases receiving other treatments, and 25 cases missing neoadju-vant therapy data. (3) Postoperative examinations. Of the 281 patients, 249 cases achieved R 0 resection, 9 cases achieved R 1 resection, and there were 23 cases missing surgical margin data. The maximum tumor diameter, the number of lymph nodes harvested and positive rate of vessel carcinoma embolus were 30.0(range, 0.5-200.0)mm, 13(range, 0-70) and 27.55%(73/265) in 281 patients. There were 252 patients with circumferential margin records, showing positive in 15 cases, with a positive rate as 5.95%(15/252). The minimum distance from deep part of tumor to circumferential margin was 7.0(range, 0-150.0)mm in 252 patients. There were 85 cases with distal margin records, showing positive in 1 case, and the distance from lower margin of tumor to distal margin was 10.0(range, 0-202.0)mm. There were 273 patients with specimen integrity records, which showed intact specimen in 208 cases, fair specimen in 58 cases, poor specimen in 4 cases, unevaluated specimen in 3 cases. There were 7 cases with rectal perforation. Of the 281 patients, cases in pathological stage T0, Tis, T1, T2, T3, T4 were 14, 5, 22, 107, 113, 12, respectively, and there were 8 cases missing pathological T staging data. Of the 281 patients, cases in pathological stage N0, N1a, N1b, N1c, N2a, N2b were 176, 27, 27, 11,20, 12, respectively, and there were 8 cases missing pathological N staging data. Of the 281 patients, there were 4 cases with distant metastasis, 262 cases without distant metastasis, 5 cases not evaluated, and 10 cases missing tumor metastasis data. Of the 125 patients undergoing neoadjuvant therapy, there were 85 cases with tumor regression grade records, including 16 cases as grade 1, 27 cases as grade 2, 19 cases as grade 3, 15 cases as grade 4, 8 cases as grade 5. (4) Analysis of influencing factors for positive circumferential margin in surgical specimen of intersphincteric resection for rectal cancer. Results of univariate analysis showed that preoperative T staging on preoperative pelvic MRI, mesorectal fascia invasion, extramural venous invasion, pathological T staging, and pathological N staging were related factors for positive circumferential margin in surgical specimen of intersphincteric resection for rectal cancer ( P<0.05). Conclusions:Intersph-incteric resection with transabdominal transanal mixed approach has good specimen quality and low positive rate of surgical margin. T staging on preoperative pelvic MRI may be related to positive circumferential margin after intersphincteric resection for rectal cancer.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Influence of Tongfu Xiefei Guanchang Solution on intestinal barrier and intestinal flora of rats with acute lung injury based on p38 MAPK/MLCK signaling pathway.
Ming MA ; Kun WANG ; Yan-Hua YANG ; Meng-Ru YUE ; Quan-Na REN ; Yu-Han CHEN ; Yong-Zhen SONG ; Zi-Fu XU ; Xu ZHAO
China Journal of Chinese Materia Medica 2024;49(21):5919-5931
The study is designed to observe the mechanism of Tongfu Xiefei Guanchang Solution(TFXF) in the treatment of acute lung injury(ALI) in rats by improving intestinal barrier and intestinal flora structure via p38 mitogen-activated protein kinase(p38 MAPK)/myosin light chain kinase(MLCK) signaling pathway. Sixty SPF-grade Wistar rats were randomly divided into the control(CON) group, lipopolysaccharide(LPS) group(7.5 mg·kg~(-1)), LPS + dexamethasone(DEX) group(3.5 mg·kg~(-1)), LPS + high-dose(HD)-TFXF group(14.74 g·kg~(-1)), LPS + middle-dose(MD)-TFXF group(7.37 g·kg~(-1)), and LPS + low-dose(LD)-TFXF group(3.69 g·kg~(-1)). ALI model of the rat was established by intraperitoneal injection of LPS. The lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured; tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) levels in lung and colon tissue of rats were detected by enzyme linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the pathological expression in the lung and colon tissue of rats. The mRNA expression of p38 MAPK, TNF-α, and IL-1β in rat lung tissue was determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). Western blot was used to detect the protein expression related to the p38 MAPK/MLCK signaling pathway in the colon tissue of rats. 16S rRNA sequencing was used to detect changes in the composition and content of intestinal flora in rats, and correlation analyses were performed to explore the regulatory role of intestinal flora in improving ALI in rats. The results showed that compared with those in the LPS group, the histopathological scores of lung and colon tissue, LDH activity, and total protein concentration in BALF were significantly reduced in rats in all groups after drug administration. Except for the LPS + LD-TFXF group, the remaining groups significantly reduced the levels of TNF-α and IL-1β in the lung and colon tissue of rats. The protein expressions of phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK)/p38, phosphorylated myosin light chain(p-MLC)/myosin light chain 2(MLC2), and MLCK in colon tissue of rats in each drug administration group were significantly decreased. The mRNA expression levels of p38 MAPK, TNF-α, and IL-1β were significantly reduced in the LPS + HD-TFXF group. 16S rRNA sequencing results showed that the abundance of intestinal flora was significantly higher in the LPS + HD-TFXF group, and intestinal floras including Sobs, Shannon, and Npshannon were significantly higher. The β-diversity distribution of intestinal flora tends toward the CON group, and the abundance of Firmicutes was significantly higher. The abundance of Proteobacteria was significantly reduced; the abundance of Bacteroides was significantly reduced, and the abundance of Ruminococcus was significantly higher. The main species differences were Blautia, Roseburia_sp_499, and Butyricicoccus. TNF-α and IL-1β of lung tissue were negatively correlated with Muribaculaceae, unclassified norank_f_Eubacterium_coprostanoligenes, and Ruminococcus and positively correlated with Bacteroides. Meanwhile, TNF-α and IL-1β of colon tissue were negatively correlated with unclassified norank_f_Eubacterium_coprostanoligenes and Ruminococcus and positively correlated with Bacteroides. The predicted biological function of the flora was related to the biosynthesis of secondary metabolites, amino acid biosynthesis, sugar metabolism, and oxidative phosphorylation. The above studies show that TFXF can repair lung and colon tissue structure and regulate inflammatory factor levels by modulating the abundance and diversity of intestinal flora species in ALI rats. Its mechanism of action in ameliorating ALI in rats may be related to the inhibition of inflammation, improvement of intestinal mucosal permeability, and maintenance of intestinal flora homeostasis and barrier through the p38 MAPK/MLCK signaling pathway.
Animals
;
Acute Lung Injury/genetics*
;
Rats
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Myosin-Light-Chain Kinase/genetics*
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Wistar
;
Signal Transduction/drug effects*
;
Interleukin-1beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung/metabolism*
;
Intestinal Mucosa/metabolism*
;
Humans
10.Moving Epidemic Method for Surveillance and Early Warning of Hand, Foot, and Mouth Disease in Beijing, China.
Shuai Bing DONG ; Yu WANG ; Da HUO ; Hao ZHAO ; Bai Wei LIU ; Ren Qing LI ; Zhi Yong GAO ; Xiao Li WANG ; Dai Tao ZHANG ; Quan Yi WANG ; Lei JIA ; Peng YANG
Biomedical and Environmental Sciences 2023;36(12):1162-1166

Result Analysis
Print
Save
E-mail