1.Somatic hybridization between Brassica napus and Eruca sativa mill.
Chuanli ZHANG ; Zhixin YANG ; Xuemei GUI ; Yating LIU ; Xiaoqiang MAO ; Guoyin XIA ; Liangbin LIN
Chinese Journal of Biotechnology 2008;24(5):793-802
In order to expand gene resources and improve Brassica napus cultivars, protoplasts isolated from hypocotyls of Brassica napus cv. Huayou No. 3 and Eruca sativa were fused by PEG-high Ca2+-high pH. Fusion frequency was up to 18.2% when fusion system contained 5 x 10(5) protoplasts/mL, and when PEG concentration of fusion agents were 35% and when fusion time was 25 min. Then the fused protoplasts were cultured by the method of thin liquid layer at the density of 1 x 10(5) protoplasts/mL in improved KM8p medium supplemented with 1.0 mg/L 2,4-D, 0.5 mg/L NAA, 0.5 mg/L 6-BA, 200 mg/L inositol, 300 mg/L protein hydrolysate, and the combinations of 0.1 mol/L sucrose and 0.2 mol/L glucose and 0.2 mol/L mannitol for osmotic regulator, the frequency of callus regeneration was up to 6.8%. When the micro-calli transferred to the proliferation medium that contained B5 salts, 0.087 mol/L sucrose, 0.2 mg/L 2,4-D, 0.5 mg/L NAA, 0.2 mg/L 6-BA and 0.5% Agar, pH 5.8, have grown up to 3-5 mm of diameter, the calli were transferred to the differentiation medium that contained MS salts, 0.087 mol/L sucrose, 0.1 mg/L IAA, 0.8 mg/L 6-BA, 0.8% Agar, pH5.8, the shoots were regenerated in 4 weeks and its frequency was up to 32.8%. Then 2-3 cm shoots were transferred to 1/2 MS medium with 0.5 mg/L IBA+0.2mg/L 6-BA, plantlets were obtained in 14 days and the plantlet frequency was up to 88%. When the protoplasts of Eruca sativa were treated with UV radiation for 2 minutes calli and plantlets have been regenerated, treated for 4 min only calli have been regenerated, and treated for more than 5 min calli have not been regenerated. The callus regeneration and callus proliferation and plant regeneration from symmetric fusion were more than from asymmetric fusion. 16 hybrid plantlets have been regenerated on 21 piece of hybrid calli identified by cytology method.
Brassica
;
genetics
;
Brassicaceae
;
genetics
;
Cell Fusion
;
Hybrid Cells
;
Hybridization, Genetic
;
Protoplasts
;
Regeneration
;
Ultraviolet Rays
2.Agrobacterium rhizogenes-mediated transformation and regeneration of the Apocynum venetum.
Haiyan JIA ; Bing ZHAO ; Xiaodong WANG ; Yuchun WANG
Chinese Journal of Biotechnology 2008;24(10):1723-1728
A system for the Agrobacterium rhizogenes-mediated transformation and plant regeneration of A. venetum has been developed. The highest transformation frequency was 100%, achieved by using strain LBA9402 with root explants. The highest density of hairy roots reached 22 when root explants transformed by R1000 cultured in the dark. Adventitious shoots were obtained from profusely branched, fast-growing (type PBF) hairy roots, and the adventitious shoot induction frequency was 20%. Regenerated shoots rooted easily on hormone-free 1/2 MS solid medium in 2 weeks. Approximately 1/3 regenerated plants derived from hairy roots exhibited prolific roots with shortened internodes. Whereas other regenerated plants showed another phenotype: long intemodes, strong stems, and fleshy blades. However, all regenerated plants displayed a relatively fast development procedure and stronger than the aseptic seedlings. Polymerase chain reaction (PCR) analyses confirmed the hairy root lines and regenerated plants were induced by A. rhizogenes.
Apocynum
;
genetics
;
growth & development
;
Plant Roots
;
growth & development
;
Regeneration
;
Rhizobium
;
genetics
;
Tissue Culture Techniques
;
Transformation, Genetic
4.Special culture mediums of breeding clones of Dendrobium officinale.
Xiao-Ling ZHANG ; Ling-Ju ZHANG ; Yu-Qiu ZHU ; Lin-Hua WANG
China Journal of Chinese Materia Medica 2013;38(4):494-497
The explants were obtained from stem segments of hybrid combination of Dendrobium officinale germplasms (Zhejiang Yandang Mountain x Yunnan Guangnan). The screened culture mediums for buds induction and multiplication, which were 1/2MS + IBA 1.0 mg x L(-1) +6-BA 1.0 mg x L(-1) and 1/2MS + IBA 1.5 mg x L(-1) +6-BA 0.5 mg x L(-1) respectively, were applied to 159 germplasms of D. officinale from Zhejiang, Yunnan, Guangxi, Hunan, etc. The medium for axillary buds induction had universality with 94.3% induction rate. During buds multiplication, there were significant differences in proliferation effect among germplasms, and three proliferation forms i.e. single bud, multiple buds and protocorm were differentiated from different germplasms. The results showed that different germplasms of D. officinale had specific requirements for culture medium. Therefore, developing special culture medium for breeding clones of D. officinale is urgent and has important application values.
Culture Media
;
chemistry
;
Dendrobium
;
genetics
;
growth & development
;
physiology
;
Hybridization, Genetic
;
Regeneration
5.Effect study of Sonic hedgehog overexpressed hair follicle stem cells in hair follicle regeneration.
Yingying YANG ; Gang WANG ; Qian YANG ; Bo DIAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(7):868-878
OBJECTIVE:
To determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration.
METHODS:
Hair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups.
RESULTS:
The isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences ( P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant ( P<0.05).
CONCLUSION
Lentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.
Animals
;
Female
;
Mice
;
Alopecia/surgery*
;
Hair Follicle
;
Hedgehog Proteins/genetics*
;
Mice, Nude
;
Regeneration
;
Stem Cells
6.Primary cilia support cartilage regeneration after injury.
Dike TAO ; Lei ZHANG ; Yunpeng DING ; Na TANG ; Xiaoqiao XU ; Gongchen LI ; Pingping NIU ; Rui YUE ; Xiaogang WANG ; Yidong SHEN ; Yao SUN
International Journal of Oral Science 2023;15(1):22-22
In growing children, growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest. Interestingly, one type of fracture injuries within the growth plate achieve amazing self-healing, however, the mechanism is unclear. Using this type of fracture mouse model, we discovered the activation of Hedgehog (Hh) signaling in the injured growth plate, which could activate chondrocytes in growth plate and promote cartilage repair. Primary cilia are the central transduction mediator of Hh signaling. Notably, ciliary Hh-Smo-Gli signaling pathways were enriched in the growth plate during development. Moreover, chondrocytes in resting and proliferating zone were dynamically ciliated during growth plate repair. Furthermore, conditional deletion of the ciliary core gene Ift140 in cartilage disrupted cilia-mediated Hh signaling in growth plate. More importantly, activating ciliary Hh signaling by Smoothened agonist (SAG) significantly accelerated growth plate repair after injury. In sum, primary cilia mediate Hh signaling induced the activation of stem/progenitor chondrocytes and growth plate repair after fracture injury.
Mice
;
Animals
;
Hedgehog Proteins/genetics*
;
Receptors, G-Protein-Coupled/metabolism*
;
Cilia/metabolism*
;
Cartilage/metabolism*
;
Regeneration
7.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
8.Induction of polyploid hairy roots and its plant regeneration in Pogostemon cablin.
Heping SHI ; Wu YU ; Guopeng ZHANG ; Pokeung Eric TSANG ; Cheuk Fai Stephen CHOW
Chinese Journal of Biotechnology 2014;30(8):1235-1246
Abstract: In order to enhance the content of secondary metabolites patchouli alcohol in Pogostemon cablin, we induced polyploid hairy roots and their plant regeneration, and determined the content of patchouli alcohol through artificial chromosome doubling with colchicine. The highest rate of polyploidy induction was more than 40% when hairy roots were treated with 0.05% colchicine for 36 h. The obtained polyploid hairy roots formed adventitious shoots when cultured in an MS medium with 6-BA 0.2 mg/L and NAA 0.1 mg/L for 60 d. Compared with the control diploid plants, the polyploid hairy root-regenerated plants of P. cablin had more developed root systems, thicker stems, shorter internodes and longer, wider and thicker leaves. Observation of the chromosome number in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 128 (4n = 128) chromosomes. The leaves contained around twice as many stomatal guard cells and chloroplasts as the controls, but the stomatal density declined with increasing ploidy. The stomatal density in diploid plants was around 1.67 times of that in polyploid plants. GC-MS analysis shows that the content of patchouli alcholol in the hairy root-derived polyploid plants was about 4.25 mg/g dry weight, which was 2.3 times of that in diploid plants. The present study demonstrates that polyploidization of hairy roots can stimulate the content of patchouli alcholol in medicinal plant of P. cablin.
Colchicine
;
Diploidy
;
Lamiaceae
;
genetics
;
growth & development
;
Plant Roots
;
growth & development
;
Plants, Medicinal
;
genetics
;
growth & development
;
Polyploidy
;
Regeneration
;
Sesquiterpenes
;
chemistry
9.Callus induction and regeneration from mature seeds of indica rice minghui 63 and anti-fungal assay of transgenic rice plants.
Li-Jiang WANG ; Xiao-Tian MING ; Cheng-Cai AN ; Hua-Yi YUAN ; Zhang-Liang CHEN
Chinese Journal of Biotechnology 2002;18(3):323-326
A large number of callus from mature seeds of indica rice minghui 63 were obtained through pre-induction on medium with 2 mg/L 2,4-D but without inorganic and organic components for 9 days. Trichosanthin gene was transferred into indica rice minghui 63 by using agrobacterium with the help of bombardment and the transgenic plants were obtained by inducing regeneration. Southern and Western blot analysis showed that the trichosanthin gene had been transferred into genome of minghui 63 and expressed in rice plants. The anti-fungal assay suggested that transgenic rice plants enhanced resistance to infection of Pyricularia oryzae.
Mitosporic Fungi
;
drug effects
;
Oryza
;
genetics
;
microbiology
;
Plant Diseases
;
microbiology
;
Plants, Genetically Modified
;
Regeneration
;
Seeds
;
physiology
;
Trichosanthin
;
genetics
10.Asymmetric somatic hybridization between mixed wheat and Psathyrostachys juncea.
Chinese Journal of Biotechnology 2004;20(4):610-614
Psathyrostachys juncea is a potential source of useful genes, such as the barley yellow dwarf virus resistance, salt tolerance and drought tolerance, for wheat improvement. Conventional sexual hybridization between wheat and Psathyrostachys juncea is very difficult to occur as the two are sexual incompatible. Somatic hybridization is a promising technique for creating hybrids across the sexual border. Here we report a fusion system for somatic hybridization of wheat using PEG method. Mixed protoplasts of two wheat (Triticum aestivum L. cv. Jinan 177) culture cells (cha9 and 176) were used as the recipients to fuse with the donors, the protoplasts of Psathyrostachys juncea (Fisch.) Nevski irradiated with ultraviolet light (UV) at an intensity of 380 microW/cm2 for 1 min or 2 min. Sixteen clones were generated in the combination I, (wheat 176 + wheat cha9 + P. juncea 1 min UV treatment) and five of the hybrid clones could differentiate to green plants. All the regenerated clones were confirmed as somatic hybrids by cytological, isozyme, chromosome and random amplified polymorphic DNA (RAPD) analysis. Chloroplast genome of the hybrids was analyzed using 7 pairs of wheat-specific chloroplast microsatellite (SSR) primers. Three clones were obtained from the combination II (wheat 176 + wheat cha9 + P. juncea 2 min UV treatment), and all browned slowly and died in 3 months. This result indicated that the mixed wheat cells was helpful to the formation and regeneration of hybrid callus and the dosage of the UV had significant effect on the development of the fusion products.
Chromosomes, Plant
;
Hybridization, Genetic
;
Poaceae
;
genetics
;
growth & development
;
Random Amplified Polymorphic DNA Technique
;
Regeneration
;
Triticum
;
genetics
;
growth & development