1.Preparation and identification of monoclonal antibodies against cat allergen Fel d 1.
Linying CAI ; Zichen ZHANG ; Zhuangli BI ; Shiqiang ZHU ; Miao ZHANG ; Yiming FAN ; Jingjie TANG ; Aoxing TANG ; Huiwen LIU ; Yingying DING ; Chen LI ; Yingqi ZHU ; Guijun WANG ; Guangqing LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):348-354
Objective Currently, there is no commercially available quantitative detection kit for the main Felis domestic allergen (Fel d 1) in China. To establish a rapid detection method for Fel d 1, this study aims to prepare monoclonal antibodies against Fel d 1 protein. Methods The codon preference of Escherichia coli was utilized to optimize and synthesize the Fel d 1 gene. The prokaryotic expression plasmid pET-28a-Fel d 1 was constructed and used to express and purify the recombinant Fel d 1 protein. Subsequently, the recombinant protein was immunized into BALB/c mice and monoclonal antibodies (mAbs) were prepared by the hybridoma technique. An indirect ELISA was established using the recombinant Fel d 1 as the coating antigen, and hybridoma cell lines were screened for positive clones. The specificity and antigenic epitopes of the mAbs were confirmed by Western blot analysis. Finally, the selected hybridoma cells were injected into the peritoneal cavities of BALB/c mice for large-scale monoclonal antibody production. Results The recombinant plasmid pET-28a-Fel d 1 was successfully constructed, and soluble Fel d 1 protein was obtained after optimizing the expression conditions. Western blot and antibody titer assays confirmed the successful isolation of two hybridoma cell lines, 7D11 and 5H4, which stably secreted mAbs specific to Fel d 1. Antibody characterization revealed that the 5H4 mAb was of the IgG2a subtype and could recognize the amino acid region 105-163 of Fel d 1, while the 7D11 mAb was the IgG1 subtype and could recognize the amino acid region 1-59. Conclusion The high-purity recombinant Fel d 1 protein produced in this study provides a promising alternative for clinical immunotherapy of cat allergies. Furthermore, the monoclonal antibody prepared in this experiment lays a material foundation for the in-depth study of the biological function of Fel d 1 and the development of ELISA detection.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice, Inbred BALB C
;
Cats
;
Mice
;
Allergens/genetics*
;
Glycoproteins/genetics*
;
Enzyme-Linked Immunosorbent Assay
;
Hybridomas/immunology*
;
Recombinant Proteins/genetics*
;
Female
;
Antibody Specificity
2.Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides.
Bin WANG ; Jingru YING ; Yuanyuan CHEN ; Zemin FANG ; Yazhong XIAO ; Wei FANG ; Dongbang YAO
Chinese Journal of Biotechnology 2025;41(1):333-351
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.
Oligosaccharides/metabolism*
;
Glycine max/metabolism*
;
Bacillus subtilis/metabolism*
;
Sucrase/biosynthesis*
;
Raffinose/metabolism*
;
Fructans/metabolism*
;
Sucrose/metabolism*
;
Bacillus/genetics*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/biosynthesis*
3.Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from Bacillus atrophaeus.
Wenjuan DU ; Awagul TURSUN ; Zhiqin DONG ; Huijuan MA ; Zhenghai MA
Chinese Journal of Biotechnology 2025;41(1):352-362
To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from Bacillus atrophaeus with a high protease yield from the barren saline-alkali soil and expressed this gene in Escherichia coli. The expressed chitosanase of B. atrophaeus (BA-CSN) was purified by nickel-affinity column chromatography. The properties including optimal temperature, optimal pH, substrate specificity, and kinetic parameters of BA-CSN were characterized. The results showed that BA-CSN had the molecular weight of 31.13 kDa, the optimal temperature of 55 ℃, the optimal pH 5.5, and good stability at temperatures below 45 ℃ and pH 4.0-9.0. BA-CSN also had good stability within 4 h of pH 3.0 and 10.0, be activated by K+, Na+, Mn2+, Ca2+, Mg2+, and Co2+, (especially by Mn2+), and be inhibited by Fe3+, Cu2+, and Ag+. BA-CSN showcased the highest relative activity in the hydrolysis of colloidal chitosan, and it had good hydrolysis ability for colloidal chitin. Under the optimal catalytic conditions, BA-CSN demonstrated the Michaelis constant Km and maximum reaction rate Vmax of 9.94 mg/mL and 26.624 μmoL/(mL·min), respectively, for colloidal chitosan. In short, BA-CSN has strong tolerance to acids and alkali, possessing broad industrial application prospects.
Bacillus/genetics*
;
Hydrogen-Ion Concentration
;
Escherichia coli/metabolism*
;
Glycoside Hydrolases/biosynthesis*
;
Substrate Specificity
;
Enzyme Stability
;
Chitosan/metabolism*
;
Temperature
;
Kinetics
;
Cloning, Molecular
;
Bacterial Proteins/biosynthesis*
;
Recombinant Proteins/genetics*
4.A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-L-cysteine sulfoxide.
Mengka LIAN ; Zhaolin SONG ; Wenjing GAO ; Gang ZHU ; Mengjun DONG ; Yu LI ; Yihan LIU ; Fenghua WANG ; Fuping LU
Chinese Journal of Biotechnology 2025;41(1):474-485
S-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe (spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.
Schizosaccharomyces/genetics*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Cysteine/biosynthesis*
;
Mixed Function Oxygenases/metabolism*
;
Schizosaccharomyces pombe Proteins/metabolism*
;
Oxygenases/metabolism*
;
Kinetics
5.Baculovirus expression system-based expression of horseshoe crab factor C and its activity.
Lan LAN ; Huanlei LIU ; Hao NAN ; Sijun HE ; Wangcheng SONG ; Yunlong WANG ; Xinjuan FAN ; Xiangbo WAN ; Xiaodong XU
Chinese Journal of Biotechnology 2025;41(4):1428-1439
Endotoxins are common exogenous pyrogens. Excessive endotoxins in medical devices and injections can lead to serious consequences such as sepsis, septic shock, and even death. Therefore, endotoxin detection plays a crucial role in medical, pharmaceutical, and food sectors. The wide application of Limulus amebocyte lysate (LAL) has led to a sharp decline in the number of horseshoe crabs. Moreover, the LAL assay has limitations such as interbatch variations and difficulty in quantification. The recombinant factor C (rFC) assay is stable between batches, highly sensitive, and capable of quantitation, and thus it can be used as an alternative for the LAL assay. However, the high cost and complex procedures involved in producing recombinant factor C have limited the widespread application of this method. In order to simplify the preparation and reduce the production cost of recombinant factor C, this study focuses on the production of recombinant factor C based on the baculovirus expression system. Multiple measures such as a high-yield and anti-apoptotic vector qBac-IIIG, the optimal signal peptide, and the optimized codon were used to reach the goal of endotoxin detection with cell supernatant. This method simplifies the steps of protein purification. The sensitivity of the supernatant reached 0.05 EU/mL in a 1-L fermentation system, and 500 000 detecting reactions can be supported per liter of fermentation broth. This study increases the yield and activity of recombinant factor C, simplifies the procedures of protein purification, and reduces the cost, laying a foundation for the promotion and application of recombinant factor C in endotoxin detection.
Animals
;
Recombinant Proteins/genetics*
;
Horseshoe Crabs/chemistry*
;
Baculoviridae/metabolism*
;
Endotoxins/analysis*
;
Protein C/biosynthesis*
;
Genetic Vectors/genetics*
;
Arthropod Proteins/genetics*
;
Enzyme Precursors
;
Serine Endopeptidases
6.Expression and biological characterization of anti-CD63 single-chain variable fragment antibody in Pichia pastoris.
Chinese Journal of Biotechnology 2025;41(4):1440-1454
To prepare antibodies that specifically recognize the conserved domain in the large extracellular loop of the CD63 protein, we expressed anti-CD63 single-chain variable fragment (scFv) antibody in Pichia pastoris in a secreted form. The purified expression product was found to bind specifically with CD63 protein and recognize CD63 on the surface of SK-MEL-28 cells. The variable region of the anti-CD63 monoclonal antibody in an anti-CD63-positive cell line was sequenced. The anti-CD63 scFv consisted of a variable heavy chain and a variable light chain linked by a flexible peptide was then designed. After codon optimization, the gene was synthesized and cloned into the expression plasmid pPICZα-A. The SacI-linearized plasmid was electroporated into P. pastoris X33, and 1% methanol were used to induce the expression of scFv. The fermentation supernatant was purified by Ni column. Anti-CD63 scFv was identified by SDS-PAGE and Western blotting, and its biological activities were analyzed by immunoblotting, immunofluorescence, cell-based ELISA, and flow cytometry. A P. pastoris strain capable of expressing and secreting anti-CD63 scFv was successfully obtained. The antibody had a molecular weight of approximately 30 kDa and specifically recognized CD63 protein. The expression of anti-CD63 scFv in P. pastoris paves the way for the production of anti-CD63 antibodies on a large-scale, which is undoubtedly an economical and effective way of antibody acquisition.
Single-Chain Antibodies/immunology*
;
Humans
;
Tetraspanin 30/immunology*
;
Recombinant Proteins/immunology*
;
Pichia/genetics*
;
Saccharomycetales/metabolism*
7.Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen.
Fei LI ; Yuxi HOU ; Ben RAO ; Xiaoyan LIU ; Yaping WANG ; Yimin QIU
Chinese Journal of Biotechnology 2025;41(4):1573-1587
Collagen, a vital matrix protein for various tissue and functions in animals, is widely applied in biomaterials. In type Ⅰ collagen, missense mutations of glycine (Gly) in the Gly-Xaa-Yaa triplet of the triple helix are a major cause of osteogenesis imperfecta (OI). Clinical manifestations exhibit marked heterogeneity, spanning a broad disease spectrum from mild skeletal fragility (Type Ⅰ) to severe limb deformities (Type Ⅲ) and perinatal lethal forms (Type Ⅱ). This study utilized recombinant collagen as a model to further elucidate whether Gly→Ala/Val mutations at the N-terminus of the integrin-binding sequence GFPGER affect collagen structure and function, and to explore the underlying mechanisms by which missense mutations impact the biological function of collagen. By introducing Ala and Val substitutions at seven Gly positions N-terminal to the GFPGER sequence, we systematically assessed the effects of these amino acid replacements on the triple-helical structure, thermal stability, integrin-binding ability, and cell adhesion of recombinant collagen. All constructs formed a stable triple-helix structure, with slightly compromised thermal stability. Gly→Val substitutions increased the susceptibility of recombinant collagen to trypsin, which suggested local conformational perturbations in the triple helix. In addition, Gly→Val substitutions significantly reduced the integrin-binding affinity and decreased HT1080 cell adhesion, with the effects stronger than Gly→Ala substitutions. Compared with Gly→Ala substitutions, substitution of Gly with the larger residue Val had enhanced negative effects on the structure and function of recombinant collagen. These findings provide new insights into the molecular mechanisms of osteogenesis imperfecta and offer theoretical references and experimental foundations for the design of collagen sequences and the development of collagen-based biomaterials.
Recombinant Proteins/biosynthesis*
;
Glycine/genetics*
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Integrins/metabolism*
;
Collagen/metabolism*
;
Collagen Type I/metabolism*
;
Amino Acid Substitution
;
Mutation
;
Mutation, Missense
8.Recombinant expression of Sphingobium yanoikuyae esterase SyEst870 capable of degrading carbamate pesticides.
Xiaoqian XIE ; Yin FENG ; Yuanyuan ZHOU ; Xin YAN ; Xiaoqin YUAN ; Wuxia QIU ; Xinfang MAO ; Zhongyuan LIU
Chinese Journal of Biotechnology 2025;41(4):1605-1620
Carbamate pesticides, a new type of broad-spectrum pesticides for controlling pests, mites, and weeds, are developed to address the shortcomings of organochlorine and organophosphorus pesticides. Their widespread use and slow degradation have led to environmental pollution, causing damage to ecosystems and human health. Managing pesticide residues is a pressing issue in the current environmental protection. This study aims to investigate the expression of SyEst870, a member of the SGNH/GDSL hydrolase family in Sphingobium yanoikuyae, in a prokaryotic system and evaluate the ability of the recombinant protein to degrade carbamate pesticides. The prokaryotic expression vector pET-32a-SyEst870 was constructed and transformed into the Escherichia coli BL21 for heterologous expression. The purified protein was studied in terms of enzyme activity and effects of temperature, pH, and metal ions on the enzyme activity, with p-nitrophenol acetate as the substrate and based on the standard curve of p-nitrophenol. LC-MS (liquid chromatography-mass spectrometry) was employed to examine the degradation effects of SyEst870 on carbaryl, metolcarb, and isoprocarb. GC-MS (gas chromatography-mass spectrometry) was employed to detect the degradation products of SyEst870 for the three pesticides. The soluble protein SyEst870 was successfully obtained through the heterologous expression in Escherichia coli, which yielded an enzyme with the activity of 677.5 U after affinity chromatography. SyEst870 exhibited degradation rates of 82.34%, 84.43%, and 92.87% for carbaryl, metolcarb, and isoprocarb, respectively, at an initial concentration of 100 mg/L within 24 h at 30 ℃ and pH 7.0. The primary degradation products of carbaryl were identified as α-naphthol and methyl isocyanate. Metolcarb was mainly degraded into m-cresol and methyl isocyanate, and isoprocarb was mainly degraded into 2-isopropylphenol and methyl isocyanate. Compared with the half-life of carbamate pesticides in the natural environment, which ranges from a few days to several weeks, the recombinant protein SyEst870 can rapidly eliminate the residues of carbamate pesticides. This study lays a foundation for addressing pesticide residues in the environment and in fruits and vegetables.
Escherichia coli/metabolism*
;
Sphingomonadaceae/genetics*
;
Recombinant Proteins/metabolism*
;
Biodegradation, Environmental
;
Esterases/metabolism*
;
Pesticides/isolation & purification*
;
Carbamates/isolation & purification*
9.Optimization of the Bombyx mori baculovirus expression system enhances the expression level of recombinant human keratinocyte growth factor-1 (hKGF-1).
Shuohao LI ; Xingyang WANG ; Xiaofeng WU ; Yujing XU ; Tian YANG ; Xinyu ZHU
Chinese Journal of Biotechnology 2025;41(7):2634-2646
Human keratinocyte growth factor-1 (hKGF-1), a member of the fibroblast growth factor (FGF) family, plays crucial roles in organ development, cell proliferation, wound healing, and tissue repair, representing one of the most effective and specific growth factors for skin repair. However, obtaining recombinant hKGF-1 remains challenging due to its universally low expression efficiency in vitro. This study employs the Bombyx mori baculovirus expression system to establish a technological platform that utilizes the economically important insect Bombyx mori as a bioreactor for high-efficiency and low-cost expression and production of recombinant human keratinocyte growth factor 1 (hKGF-1) protein, ultimately achieving high-level expression of hKGF-1 in Bombyx mori ovary cell line (BmN). In this study, we optimized the hKGF-1 sequence based on the codon preference of baculovirus. By fusing hKGF-1 with polyhedrin (highly expressed in this system) and adding extra promoters and enhancers, we significantly improved the expreesion level of hKGF-1 in Bombyx mori cells. The results demonstrated that the aforementioned strategies significantly enhanced the expression level of hKGF-1 in Bombyx mori cells. SDS-PAGE and Western blotting results revealed that the highest hKGF-1 expression (accounting for 8.7% of total cellular protein) was achieved when the Polh promoter was combined in tandem with the P6.9 promoter and hKGF-1 was fused with a 15-residue polyhedrin fragment for co-expression. The optimal harvest time was determined to be 120 h post transfection. This study achieved the efficient expression of hKGF-1 in Bombyx mori cells, establishing an ideal technological platform for the industrial utilization of recombinant hKGF-1. The developed methodology not only provides valuable technical references for the production of other growth factors and complex proteins, but also demonstrates significant implications for employing silkworms as bioreactors for recombinant human protein expression.
Bombyx/metabolism*
;
Animals
;
Baculoviridae/metabolism*
;
Humans
;
Fibroblast Growth Factor 7/biosynthesis*
;
Recombinant Proteins/genetics*
;
Cell Line
;
Genetic Vectors/genetics*
10.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity

Result Analysis
Print
Save
E-mail