1.Recent progress in fusion enzyme design and applications.
Ziliang HUANG ; Chong ZHANG ; Xi WU ; Nan SU ; Xinhui XING
Chinese Journal of Biotechnology 2012;28(4):393-409
Engineering and redesign of enzymes are important to industrial biocatalysis. Fusion enzyme technology, based on fusion protein design, is frequently used in multifunctional enzyme construction and enzyme proximity control. Here, we reviewed the recent progress in molecular design strategy and application studies of fusion enzymes. The concept and features of fusion enzymes were introduced, followed by a systematical summary of the design strategy of fusion enzymes. In particular, the effects of different linker properties on fusion enzymes and their possible mechanisms were discussed. In addition, recent studies on fusion enzyme applications were also discussed. Finally, based on our own studies on fusion enzymes and the current research progress, the key problems in fusion enzyme technology and perspectives of this field were discussed.
Biocatalysis
;
Biotechnology
;
Enzymes
;
chemistry
;
Protein Engineering
;
Recombinant Fusion Proteins
;
chemistry
2.Characterization of the affinity-tags-regulated (S)-carbonyl reductase 2 towards 2-hydroxyacetophenone reduction.
Yaohui LI ; Rongzhen ZHANG ; Yan XU
Chinese Journal of Biotechnology 2021;37(12):4277-4292
The influence of different affinity tags on enzyme characteristics varies. The (S)-carbonyl reductase 2 (SCR2) from Candida parapsilosis can reduce 2-hydroxyacetophenone, which is a valuable prochiral ketones. Different affinity tags, i.e. his-tag, strep-tag and MBP-tag, were attached to the N terminus of SCR2. These tagged SCR2 enzymes, i.e. his6-SCR2, strep-SCR2 and MBP-SCR2, were heterologously expressed in Escherichia coli and purified to study their characteristics towards 2-hydroxyacetophenone reduction. Affinity tags did affect the characteristics of the recombinant SCR2 enzymes. Specifically, affinity tags affect the stability of recombinant SCR2 enzymes: 1) At pH 6.0, the remaining enzyme activities of his6-SCR2 and strep-SCR2 were only 95.2% and 90.0% of the untagged SCR2, while that of MBP-SCR2 was 1.2 times of the untagged SCR2 after incubating for 13 h at 30 °C. 2) The half-life of MBP-SCR2 at 50 °C was 26.6%-48.8% longer than those of strep-SCR2, his6-SCR2 and untagged SCR2. 3) The kcat of MBP-SCR2 was about 1.25-1.45 times of that of small affinity-tagged and untagged SCR2 after storing at -80 °C for 60 d. Structural informatics indicated that the α-helices at the C terminus of MBP-SCR2 contributed to the stability of the N terminus of fusion protein of SCR2. Data from circular dichroism showed that the MBP-tag has some influence on the secondary structure of SCR2, while melting temperature analysis demonstrated that the Tm of the recombinant MBP-SCR2 was about 5 °C higher than that of the untagged SCR2. This study obtained an efficient and stable recombinant SCR2, i.e. the MBP-SCR2. Moreover, this study could serve as a reference for other researchers to evaluate and select appropriate affinity tags for their research.
Alcohol Oxidoreductases
;
Escherichia coli/genetics*
;
Recombinant Fusion Proteins/genetics*
3.Construction of prokaryotic expression vector of FimA gene from Porphyromonas gingivalis, fusion expression and purification in E. coli BL21(DE3)pLyS.
Ang LI ; Hong-guon XIE ; Ping LIANG ; Chun-hui ZHU ; Jian-feng SHI ; Guo-zhou RAO ; Jian-zhong GOU
West China Journal of Stomatology 2010;28(3):241-245
OBJECTIVETo clone the FimA gene of fimbriae from Porphyromonas gingivalis (P. gingivalis) and to construct prokaryotic expression vector which was induced in E.coli BL21(DE3)pLyS in the form of fusion protein expression and to identify, purify the product of its expression.
METHODSTo clone the FimA gene of fimbriae from P. gingivalis and to construct prokaryotic expression vector pET15b-FimA vector which was transformed into the competent cells of BL21(DE3)pLyS. The expression of fusion protein was induced by isopropyl beta-D-1-thiogalactopyranoside (IPTG). With anti-6xHis Tag monoclonal antibody as the first antibody, the expressed fusion protein was characterized by Western blot and purified by Co(2+)-NTA affinity chromatography.
RESULTSCloned FimA gene sequences and inserted into expression vector of the FimA sequences were related to the sequence in GenBank database showed 100% homology. IPTG induced and then identified by Western blot showed a fragment of 4.1 x 10(4) has been expressed. Co(2+)-NTA affinity chromatography column was used to obtain high concentrations of FimA purified protein.
CONCLUSIONThe recombinant prokaryotic expression vector of pET15b-FimA was constructed and was expressed and purified successfully in E. coli BL21 (DE3)pLyS. This study laid the experimental foundation to further prepare for monoclonal antibodies of fimbriae of P. gingivalis and to develop the subunit protein vaccine of prevention of periodontitis.
Cloning, Molecular ; Escherichia coli ; Porphyromonas gingivalis ; Recombinant Fusion Proteins ; Recombinant Proteins
4.Cloning of the RgpAcd gene of Porphyromonas gingivalis and its expression in E. coli.
Jing XU ; Ang LI ; Jian-zhong GOU ; Yuan-chao XU ; Guo-zhou RAO ; Zheng LIU ; Hong-guo XIE
West China Journal of Stomatology 2006;24(5):400-403
OBJECTIVETo clone the catalytic domain gene sequence of RgpAcd of Porphyromonas gingivalis (P. gingivalis) and to induce its fusion expression in E. coli.
METHODSThe desired DNA fragment RgpAcd was obtained by PCR and was separately sequenced and identified by inserting into inter-vector pMD18-T vector. The correctly fragment was linked with and cloned into a prokaryotic expression vector pET-15b. The recombinant expression plasmid which had been confirmed by enzymes digestion was transformed to E. coli competent cells BL21 (DE3) and expression of fusion protein was induced by IPTG.
RESULTSA 1 476 bp specific fragment was obtained and DNA sequencing showed that the fragment was consistent with those of the published. After induction with IPTG, a fusion protein of 5 x 10(4) was visualized on SDS-PAGE gel.
CONCLUSIONThe protein of RgpAcd will be obtained for further study and its protein was correctly expressed in E. coli BL21 cells.
Cloning, Molecular ; Cloning, Organism ; Escherichia coli ; Genetic Vectors ; Polymerase Chain Reaction ; Porphyromonas gingivalis ; Recombinant Fusion Proteins ; Recombinant Proteins
5.Prokaryotic expression, purification and characterization of tissue inhibitor of metalloproteinase-2.
Aiying XUE ; Guoxing FENG ; Changchun ZHU ; Saijun FAN
Chinese Journal of Biotechnology 2020;36(12):2868-2876
Tissue inhibitor of metalloproteinases-2 (TIMP-2) inhibits tumor migration and invasion. Obtaining TIMP-2 protein is conducive to a comprehensive and in-depth study of its function and mechanism in tumorigenesis and development. We collected human TIMP-2 protein through prokaryotic expression in vitro. We expressed, purified and characterized human TIMP-2 protein. First, the human TIMP-2 gene was cloned from the cDNA obtained by reverse transcription of total RNA of human lung cancer A549 cells, and constructed to pET28a vector. The recombinant plasmid pET28a-TIMP-2 was transformed into Escherichia coli BL21(DE3) after restriction endonuclease digestion and sequencing analysis. The expression of TIMP-2 protein was induced by isopropyl-β-D-thiogalactoside (IPTG), and the expression conditions were optimized. After purification by nickel affinity column, the fusion protein His-TIMP-2 was identified by Western blotting method and its biological activity was detected by gelatin zymography. The fusion protein His-TIMP-2 existed in the form of inclusion body in E. coli. In a certain range, the concentration of IPTG had no significant effect on the expression amount of His-TIMP-2. But in this expression system, induction temperature and time were the key parameters, and the expression amount of His-TIMP-2 in E. coli increased with the increase of induction temperature. The purified and refolded fusion protein could effectively inhibit the activity of matrix metalloproteinases expressed by human lung cancer A549 cells. The acquisition of active fusion protein lays a foundation for further study of the function and mechanism of human TIMP-2, and is of great significance for tumor therapy.
Cloning, Molecular
;
Escherichia coli/genetics*
;
Humans
;
Recombinant Fusion Proteins/genetics*
;
Recombinant Proteins
;
Tissue Inhibitor of Metalloproteinase-2/genetics*
6.Expression of Pleurocidin from winter flounder in Escherichia coli and optimization of culture conditions.
Xuejiao XU ; Xiangdong ZHA ; Yuanyuan CHE ; Lijuan MA ; Siqun WU ; Peilong YANG ; Huoqing HUANG ; Bin YAO
Chinese Journal of Biotechnology 2016;32(3):365-374
To express Pleurocidin in Escherichia coli and to enhance the secretory efficiency of the fusion protein, the gene encoding Pleurocidin was ligated with Cherry DNA sequence via blunt-end ligation. Then this fusion gene was cloned into pET22b (+) vector and the recombinant plasmid was transformed into E. coli BL21 (DE3). Lactose was used to induce expression of fusion protein. The recombinant plasmid pET22b (+) -CP was successfully constructed and high-level expression of fusion protein was induced with lactose. Statistics showed that addition of glycine after 16 h of induction significantly enhanced the secretory efficiency of the fusion protein. After hydrolysis of the fusion protein by diluted hydrochloric acid and some further purification steps, r-Pleurocidin was obtained with antibacterial activity against E. coli DH5α and Bacillus subtilis BS168. In conclusion, the fusion protein was expressed in E. coli and biologically active r-Pleurocidin was obtained after hydrochloric acid cleavage and purification.
Animals
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Fish Proteins
;
biosynthesis
;
Flounder
;
Recombinant Fusion Proteins
;
biosynthesis
8.Development of a purification tag to produce thermostable fused protein.
Weixin ZHAO ; Song LIU ; Liming LIU ; Jian CHEN ; Guocheng DU
Chinese Journal of Biotechnology 2019;35(4):626-635
Self-assembling amphipathic peptides (SAPs) have alternating hydrophilic and hydrophobic residues and can affect the thermal stabilities and catalytic properties of the fused enzymes. In this study, a novel multifunctional tag, S1vw (HNANARARHNANARARHNANARARHNARARAR) was developed to modify fused enzymes. After fusing S1vw at the enzymes/proteins N-terminus through a PT-linker, the crude enzymatic activities of polygalacturonate lyase and lipoxygenase were enhanced 3.1- and 1.89-fold, respectively, compared to the wild-type proteins. The relative fluorescence intensity of the green fluorescent protein was enhanced 16.22-fold. All the three S1vw fusions could be purified by nickel column with high purities and acceptable recovery rates. Moreover, S1vw also induced the thermostabilities enhancement of the fusions, with polygalacturonate lyase and lipoxygenase fusions exhibiting 2.16- and 3.2-fold increase compared with the corresponding wild-type, respectively. In addition, S1vw could enhance the production yield of green fluorescent protein in Escherichia coli and Bacillus subtilis while the production of GFP and its S1vw fusion changed slightly in Pichia pastoris. These results indicated that S1vw could be used as a multifunctional tag to benefit the production, thermal stability and purification of the fusion protein in prokaryotic expression system.
Escherichia coli
;
Green Fluorescent Proteins
;
Hydrophobic and Hydrophilic Interactions
;
Peptides
;
Pichia
;
Recombinant Fusion Proteins
;
metabolism
9.Production of antimicrobial peptide (Oxysterlin 1) in Escherichia coli with ELP self-cleavage tag.
Li GUO ; Huaxin LIU ; Ying LIN
Chinese Journal of Biotechnology 2021;37(8):2915-2923
Antimicrobial peptides are the most promising alternatives to antibiotics. However, the strategy of producing antimicrobial peptides by recombinant technology is complicated and expensive, which is not conducive to the large-scale production. Oxysterlin 1 is a novel type of cecropin antimicrobial peptide mainly targeting on Gram-negative bacteria and is of low cytotoxicity. In this study, a simple and cost-effective method was developed to produce Oxysterlin 1 in Escherichia coli. The Oxysterlin 1 gene was cloned into a plasmid containing elastin-like polypeptide (ELP) and protein splicing elements (intein) to construct the recombinant expression plasmid (pET-ELP-I-Oxysterlin 1). The recombinant protein was mainly expressed in soluble form in E. coli, and then the target peptide can be purified with a simple salting out method followed by pH changing. The final yield of Oxysterlin 1 was about 1.2 mg/L, and the subsequent antimicrobial experiment showed the expected antimicrobial activity. This study holds promise for large-scale production of antimicrobial peptides and the in-depth study of its antimicrobial mechanism.
Elastin
;
Escherichia coli/genetics*
;
Inteins
;
Peptides/pharmacology*
;
Pore Forming Cytotoxic Proteins
;
Recombinant Fusion Proteins/genetics*
10.Expression and purification of heptad repeat region of the mumps virus F protein and analysis of characteristics.
Yue-Yong LIU ; Ming-Guang FENG ; Jie-Qing ZHU ; Li-Jie JIANG ; Po TIEN
Chinese Journal of Biotechnology 2004;20(3):377-381
Two Heptad repeat motifs (HR1 and HR2) from paramyxoviruses F protein could form thermostable heterodimers containing high alpha-helix while virus infected host cell. Following that the viral membrane and the host cell membrane were juxtaposed, which leads to membrane fusion. Mumps virus (MuV) is a member of the genus Rubulavirus in the family of Paramyxoviridae. MuV could use similar infection mechanism as well as other paramyxoviruses. In this study the HR1 and HR2 regions of MuV F protein were predicted by a computer program and expressed in E. coli with the GST fusion expression system. The GST fusion or GST-removed proteins were purified with Gluthathion Sepharose 4B Column. GST pull-down experiment suggested the interaction of HR1 and HR2 peptides, and analysis of gel filtration showed two peptides could form multimer, which indicates that the HR regions of MuV F protein may play an important role in virus fusion.
Membrane Fusion
;
genetics
;
Mumps virus
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
chemistry
;
genetics
;
isolation & purification
;
Repetitive Sequences, Amino Acid
;
Viral Fusion Proteins
;
biosynthesis
;
genetics
;
isolation & purification