1.Large-scale in vitro preparation of new gp96 tumor vaccine and analysis of its induction of specific anti-tumor immunoresponses.
Xiaoli YAN ; Changfei LI ; Xiaojun ZHANG ; Ying JU ; Bao ZHAO ; Songdong MENG
Chinese Journal of Biotechnology 2011;27(11):1598-1605
Heat shock protein gp96 isolated from tumor tissues holds great promise for tumor immunotherapy. However, at present only very limited amount of gp96 protein can be isolated from tumor tissues. Here, we reconstituted the yeast-expressed gp96 (recombinant gp96, rgp96) with B16.F10 melanoma antigens in vitro to prepare new gp96 tumor vaccine on large-scale, and analyzed its induction of specific anti-tumor immunoresponses by ELISPOT, IFN-gamma intracellular staining and cytotoxicity assays. Immunization with rgp96-tumor antigen complexes significantly inhibited B16 tumor growth compared with either rgp96 or tumor antigens alone and led to enhancement of tumor-specific T-cell activities, which was found similar to that of tumor tissue derived gp96. Our results therefore may provide bases for large-scale preparation of the new generation of gp96 tumor vaccines.
Animals
;
Cancer Vaccines
;
biosynthesis
;
genetics
;
immunology
;
therapeutic use
;
Female
;
Heat-Shock Proteins
;
biosynthesis
;
genetics
;
immunology
;
therapeutic use
;
Melanoma, Experimental
;
therapy
;
Mice
;
Mice, Inbred C57BL
;
Neoplasm Transplantation
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
therapeutic use
;
Skin Neoplasms
;
therapy
;
Yeasts
;
genetics
;
metabolism
2.An expression plasmid encoding recombinant immunotoxin IP10-DT390 suppresses the experimental autoimmune encephalomyelitis.
Wenjie CHEN ; Hong LI ; Yi JIA ; Mingyan LI ; Zhonghua JIANG ; Meili LÜ ; Lin ZHANG
Journal of Biomedical Engineering 2007;24(5):1118-1122
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS); it serves as a model for the human multiple sclerosis (MS). In mice, EAE is mediated by T cells specific for various myelin basic proteins which migrate from the periphery to the CNS. In search of a way to prevent the induction and progression of EAE, we observed the effects of recombinant immunotoxin IP10-DT390 on blocking or eliminating the active T cells in the EAE model. In this paper is presented an experimental gene therapy-based model in which the mice were made resistant to EAE induction by plasmid DNA encoding recombinant immunotoxin that was injected into the leg muscles of mice. The new immuno-biological construct could selectively impair autoreactive T-cell homing while the duration of clinical signs is shorter, and the new construct would not affect other components of the immune response. These data demonstrated the effectiveness of the constructs in the treatment of EAE and suggested its usefulness in the treatment of other autoimmune diseases.
Animals
;
Chemokine CXCL10
;
biosynthesis
;
genetics
;
therapeutic use
;
Diphtheria Toxin
;
biosynthesis
;
genetics
;
therapeutic use
;
Encephalomyelitis, Autoimmune, Experimental
;
immunology
;
pathology
;
therapy
;
Female
;
Genetic Therapy
;
Immunoglobulin Fragments
;
biosynthesis
;
genetics
;
therapeutic use
;
Immunotoxins
;
genetics
;
metabolism
;
therapeutic use
;
Mice
;
Mice, Inbred C57BL
;
Receptors, CXCR3
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
T-Lymphocytes
;
immunology
;
Transfection
3.Monitoring immune function after rapid corticosteroid reduction in kidney transplant recipients.
Shi-Hai LI ; Wei WANG ; Xiao-Peng HU ; Hang YIN ; Liang REN ; Xiao-Yong YANG ; Hang LIU ; Xiao-Dong ZHANG
Chinese Medical Journal 2011;124(5):679-682
BACKGROUNDLong-term use of steroid with large dosage might cause many adverse effects in kidney transplant patients; reducing steroid dosage to a low level for maintenance is helpful in avoiding the side-effects, but meanwhile, acute rejection may rise to be a main concern. The present research monitored the immune function changes and the incidence of acute rejection and infection after rapid steroid reduction to investigate the safety of this strategy.
METHODSA prospective trial was conducted, using tacrolimus and mycophenolate mofetil as the basic immunosuppressive regimen, in addition to antibody induction with basiliximab. Corticosteroid dosage was rapidly reduced to 10 mg/d seven days post-transplantation in the experimental group, and the standard corticosteroid therapy was employed in the control group. Patient immunity was monitored by the Immune Cell Function Assay pre- and two weeks post-transplantation. The incidence of acute rejection and infection were compared between the experimental and control group.
RESULTSComparison of intracellular adenosine triphosphate (iATP) values detected two weeks post-transplantation for the control group ((324 ± 45) ng/ml) and the experimental group ((345 ± 91) ng/ml) did not reveal a significant difference (P > 0.05). The incidence of acute rejection was analogous between groups (P > 0.05), while an increased incidence of infection was observed in the control group (53% (n = 16)) versus the experimental group (22% (n = 6), P < 0.05). Overall, recipients in the control group had longer and more recurrent infections than those in the experimental group (P < 0.05). Patients in the control group had a lower immune response ((235 ± 35) ng/ml) than those in the experimental group ((286 ± 16) ng/ml) when infection occurred (P < 0.05).
CONCLUSIONRapid reduction of steroid early after kidney transplantation does not lead to a significant rise in patient immunity. It is a safe and effective therapy for kidney transplant patients.
Adolescent ; Adrenal Cortex Hormones ; metabolism ; Adult ; Antibodies, Monoclonal ; therapeutic use ; Female ; Humans ; Immunosuppressive Agents ; therapeutic use ; Kidney Transplantation ; immunology ; Male ; Middle Aged ; Prospective Studies ; Recombinant Fusion Proteins ; therapeutic use ; Young Adult
4.High expression of HPV16L2N120E7E6 fusion protein in E. coli and its inhibitory effect on tumor growth in mice.
Li ZHAO ; Meng GAO ; Jian GAO ; Jiao REN ; Hui ZHANG ; Hou-wen TIAN ; Wen-jie TAN ; Li RUAN
Chinese Journal of Oncology 2012;34(11):810-815
OBJECTIVETo investigate the high expression of HPV16L2N120E7E6 fusion protein by prokaryotic expression system, and evaluate its immunogenicity and antitumor efficacy in vaccinated mice.
METHODSThe HPV16L2N120E7E6 fusion gene, its codons were optimized to increase the expression of the protein, was constructed by overlap extension PCR and inserted into prokaryotic expression vector pET9a. Then the fusion protein was expressed by inducing with IPTG in E. coli strain BL21 (DE3) harboring with plasmid pETL2N120E7E6, and further detected by SDS-PAGE and Western-blot. Finally, the humoral and cellular immune responses were measured by ELISA and ELISPOT, respectively, in vaccinated mice with the purified HPV16L2N120E7E6 fusion protein, and the antitumor efficacy was assessed in mice using the TC-1 tumor challenge model.
RESULTSThe codon-optimized HPV16L2N120E7E6 fusion gene was highly expressed in E. coli strain BL21 (DE3) harboring with plasmid pETL2N120E7E6, and the amount of fusion protein was nearly 48.6% of the total bacterial protein. The purified fusion protein could induce high titer of specific antibody against L2, E7 and E6 in vaccinated mice. When accompanied with the adjuvant CpG, the fusion protein was able to elicit strong and moderate cellular immune responses in vaccinated mice against peptide HPV16E7(49-57) and peptide pools of HPV16E6, respectively. Furthermore, the tumor therapeutic experiment showed that HPV16L2N120E7E6 + CpG could prevent the tumor formation in 80.0% (8/10) vaccinated mice.
CONCLUSIONSThe data of this study suggest that HPV16L2N120E7E6 fusion protein could be a promising candidate vaccine for treatment of chronic HPV16 infection and post-operative adjuvant therapy for cervical cancer.
Adjuvants, Immunologic ; pharmacology ; Animals ; Cancer Vaccines ; immunology ; therapeutic use ; Capsid Proteins ; genetics ; immunology ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Codon ; Escherichia coli ; immunology ; metabolism ; Female ; Humans ; Immunization ; methods ; Immunotherapy ; methods ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Oligodeoxyribonucleotides ; immunology ; Oncogene Proteins, Viral ; genetics ; immunology ; metabolism ; Papillomavirus E7 Proteins ; genetics ; immunology ; metabolism ; Papillomavirus Vaccines ; immunology ; therapeutic use ; Plasmids ; Recombinant Fusion Proteins ; genetics ; immunology ; metabolism ; Repressor Proteins ; genetics ; immunology ; metabolism
5.Immobilization of streptavidin-tagged bioactive hTNF-alpha on biotinylated mucosal surface of the bladder wall for treatment of superficial bladder cancer in mice.
Zhong CHEN ; Wan-long TAN ; Xin HUANG ; Zhong-kun LIANG ; Cui-xiang XU ; Ji-min GAO
Journal of Southern Medical University 2010;30(5):936-940
OBJECTIVETo investigate a novel immunotherapy through immobilization of streptavidin-tagged hTNF-alpha on the biotinylated mucosal surface of the bladder wall for bladder cancer treatment in mice.
METHODSA total of 120 female C57BL/6j mice were randomized into 5 equal groups, namely blank control, PBS, soluble hTNF-alpha, SA-GFP, and SA-hTNF-alpha treatment groups. Twenty-four hours after establishment of a mouse model of orthotopic superficial bladder cancer, SA-hTNF-alpha fusion protein was immobilized on the biotinylated mucosal surface of the bladder wall, which was repeated every 4 days for a total of 6 sessions. Immunohistochemistry was performed to detect the retention time of SA-hTNF-alpha fusion protein in the biotinylated mouse bladder mucosa and the distribution of CD4(+) and CD8(+) lymphocytes in the mucosa and tumor tissues, with the tumor growth and mouse survival also observed. The cytotoxiciy of the tumor-specific lymphocytes was evaluated. The mice responding well to the treatment were re-challenged by MB49 and monitored for survival.
RESULTSSA-hTNF-alpha could be efficiently and stably immobilized on the bladder mucosal surface for as long as 7 days. On day 60 after MB49 implantation, 18 out of 22 SA- hTNF-alpha-treated mice survived, with 9 appearing tumor-free, but all the mice in PBS control group died. Five out of 9 tumor-free mice in SA-hTNF-alpha group showed resistance to a re-challenge with intravesical MB49. The numbers of CD4(+) and CD8(+) lymphocytes were significantly greater in SA-hTNF-alpha group than in the other groups (P<0.05). The cytotoxicity of the tumor-specific lymphocytes was significantly stronger in SA-hTNF-alpha group than in the other groups (P<0.05).
CONCLUSIONSA-hTNF-alpha immobilized on the biotinylated mucosal surface of the bladder wall can significantly inhibit the tumor growth and promote the survival of the mice bearing orthotopic superficial bladder cancer.
Administration, Intravesical ; Animals ; Biotinylation ; Carcinoma, Transitional Cell ; immunology ; therapy ; Female ; Immobilized Proteins ; therapeutic use ; Immunotherapy ; methods ; Mice ; Mice, Inbred C57BL ; Recombinant Fusion Proteins ; metabolism ; therapeutic use ; Streptavidin ; metabolism ; therapeutic use ; Tumor Necrosis Factor-alpha ; metabolism ; therapeutic use ; Urinary Bladder Neoplasms ; immunology ; therapy
6.A novel immunotherapy for superficial bladder cancer by the immobilization of streptavidin-tagged bioactive IL-2 on the biotinylated mucosal surface of the bladder wall.
Xin HUANG ; Hong-sheng YU ; Zhong CHEN ; Jin-Long LI ; Zhi-Ming HU ; Ji-Min GAO
Chinese Journal of Cancer 2010;29(6):611-616
BACKGROUND AND OBJECTIVEIntravesical administration of Bacillus Calmette-Guerin (BCG) after transurethral resection is by far the most effective local therapy for superficial bladder cancer, the fifth most common cancer in the world. However, approximately one-third of patients fail to respond and most patients eventually relapse. In addition, there are pronounced side effects of BCG therapy, such as BCG sepsis and a high frequency of BCG-induced cystitis. This study established a novel immunotherapy through immobilization of streptavidin-tagged human IL-2 (SA-hIL-2) on the biotinylated mucosal surface of bladder wall.
METHODSA mouse orthotopic model of MB49 bladder cancer was established by perfusing MB49 cells into mouse bladders. The SA-hIL-2 fusion protein was immobilized on the biotinylated mucosal surface of the bladder wall. Treatment began on day 1 after MB49 implantation, once every 3 days for 6 times. Immunohistochemical assay was performed to assess the persistence of SA-hIL-2 immobilized on the biotinylated mucosal surface of the bladder wall. The mice were monitored for tumor growth and survival. On day 60 after MB49 implantation, the SA-hIL-2-cured mice, which were found to have no hematuria or palpable tumors, were challenged with wild-type MB49 cells implanted into the pretreated bladder and monitored for survival.
RESULTSSA-hIL-2 could be immobilized efficiently and durably on the bladder mucosal surface as long as 7 days. On day 60 after MB49 implantation, 9 out of 20 SA-hIL-2-treated mice survived, but all mice in PBS control group died. More importantly, 5 out of 9 tumor-free mice in the SA-hIL-2 group were protected against a second intravesical wild-type MB49 tumor challenge.
CONCLUSIONSSA-hIL-2 fusion protein could significantly inhibit tumor growth and extend the survival time in the orthotopic model of MB49 bladder cancer.
Animals ; Biotinylation ; Cell Line, Tumor ; Female ; Immobilized Proteins ; metabolism ; therapeutic use ; Immunotherapy ; methods ; Interleukin-2 ; metabolism ; therapeutic use ; Mice ; Mice, Inbred C57BL ; Mucous Membrane ; metabolism ; Neoplasm Transplantation ; Receptors, Interleukin-2 ; metabolism ; Recombinant Fusion Proteins ; metabolism ; therapeutic use ; Streptavidin ; metabolism ; therapeutic use ; Urinary Bladder ; pathology ; Urinary Bladder Neoplasms ; immunology ; therapy
7.Ovalbumin fused with diphtheria toxin protects mice from ovalbumin induced anaphylactic shock.
Bong Ki LEE ; Young Gun YOO ; Won Young LEE ; Chun Soo HONG ; Jae Ku PARK ; Jai Youl RO
Yonsei Medical Journal 2001;42(1):91-105
For those with allergy, vaccination with a specific allergen has often been used as a major therapeutic measure. However, the universal application of this technique in clinics have been restricted due to its low success rates and the risk of active systemic anaphylactic shock (ASAS). In this regard, we constructed a fusion protein (OVA-DT), ovalbumin (OVA) fused with diphtheria toxin protein (DT), which may exert a specific cytotoxicity to cells bearing OVA-specific IgE. Its therapeutic effect was evaluated in mice (BALB/c) sensitized with OVA (Os-mice). OVA challenges to the OVA-sensitized mice (Os-mice) caused ASAS to death within 30 min, but OVA-DT treatment afforded mice complete protection. When OVA-DT was treated to the Os-mice, none showed the signs of ASAS when re-challenged 48 h after the treatment. OVA-DT itself was not found to be toxic or allergenic in normal mice. The effect of OVA-DT on the biological functions of mast cells was also studied. Binding of OVA-DT to OVA-specific IgE bearing mast cells and the inhibition of histamine release from these cells were observed. In addition, OVA-DT treatment inhibited the proliferation of OVA-specific B cells in mice. In Os-mice treated with OVA-DT, levels of anti-OVA IgG2a in serum and the production of IFN-gamma by splenic lymphocytes were found to increase, but the production of IL-4 by these cells decreased. Re-direction of cytokine profiles from OVA-specific Th2 to OVA-specific Thl is suggested. These results indicate that OVA-DT can protect Os-mice from ASAS due to OVA challenge, because it inactivates OVA-specific IgE-expressing cells, including mast cells and B cells.
Anaphylaxis/prevention | control*
;
Animal
;
B-Lymphocytes/immunology
;
Female
;
Histamine Release/drug effects
;
IgE/metabolism
;
Interferon Type II/biosynthesis
;
Interleukin-4/biosynthesis
;
Lymphocyte Transformation/drug effects
;
Mast Cells/metabolism
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin/immunology*
;
Recombinant Fusion Proteins/therapeutic use*
8.Blockade of airway inflammation and hyper-responsiveness by an angiopoietin-1 variant, COMP-Ang1.
Kyung Sun LEE ; Ka Young LEE ; So Ri KIM ; Hee Sun PARK ; Seoung Ju PARK ; Kyung Hoon MIN ; Chung Hyun CHO ; Gou Young KOH ; Ho Sung PARK ; Yong Chul LEE
Experimental & Molecular Medicine 2007;39(6):733-745
Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage. Recently, we developed a soluble, stable, and potent Ang1 variant, COMP-Ang1. COMP-Ang1 is more potent than native Ang1 in phosphorylating the tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 receptor in lung endothelial cells. We have used a mouse model for allergic airway disease to determine effects of COMP-Ang1 on allergen-induced bronchial inflammation and airway hyper-responsiveness. These mice develop the following typical pathophysiological features of allergic airway disease in the lungs: increased numbers of inflammatory cells of the airways, airway hyper-responsiveness, increased levels of Th2 cell cytokines (IL-4, IL-5, and IL-13), adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), and chemokines (eotaxin and RANTES), and increased vascular permeability. Intravenous administration of COMP-Ang1 reduced bronchial inflammation and airway hyper-responsiveness. In addition, the increased plasma extravasation in allergic airway disease was significantly reduced by the administration of COMP-Ang1. These results suggest that COMP-Ang1 attenuates airway inflammation and hyper-responsiveness, prevents vascular leakage, and may be used as a therapeutic agent in allergic airway disease.
Allergens/immunology
;
Angiopoietin-1/genetics/pharmacology/*therapeutic use
;
Animals
;
Asthma/*prevention & control
;
Bronchial Hyperreactivity/physiopathology/prevention & control
;
Chemokines/metabolism
;
Inflammation/pathology/*prevention & control
;
Mice
;
Mice, Inbred C57BL
;
Recombinant Fusion Proteins/*therapeutic use
9.Construction and cellular expression of GTF-PAc fusion anti-caries DNA vaccine.
Rong JIA ; Mingwen FAN ; Zhuan BIAN ; Jihua GUO ; Zhi CHEN ; Minquan DU
Chinese Journal of Stomatology 2002;37(6):456-458
OBJECTIVETo construct a fusion anti-caries DNA vaccine pGLUA-P carrying GLU fragment from gtfB gene of Streptococcus mutans GS-5 and A-P fragment including the A region and P region of PAc protein from a DNA anti-caries vaccine pCIA-P, and to investigate its expression in prokaryotic and eukaryotic cells.
METHODSThe sequence of GLU fragment in pGLU plasmid was testified by DNA sequencing. The fusion anti-caries DNA vaccine was constructed by ligating A-P fragment from pCIA-P to pGLU. The expression of GLUA-P fusion protein in E. coli BL21 (DE3) was induced by IPTG and checked by SDS-PAGE electrophoresis. pGLUA-P was transfected in vitro to cultured rat primary muscle cells by cation liposome Dosper, and immunohistochemical method was used to test the expression of GLUA-P fusion protein in cells.
RESULTSGLU sequence was identical with relative sequence of GTF-I (GS-5 strain) in Gene Bank. Recombinant eukaryotic expression plasmid pGLUA-P was confirmed to have both GLU and A-P fragment. After pGLUA-P was transferred into E. coli (DE3), it could express a new 115 000 protein by the induce of IPTG. Specific brown products could be found in the cytoplasm of cultured rat primary muscle cells transfected by pGLUA-P.
CONCLUSIONSFusion anti-caries DNA vaccine pGLUA-P is successfully constructed and confirmed by sequencing and enzymes digestion. Fusion GLUA-P protein can be correctly expressed in prokaryotic and eukaryotic cells.
Animals ; Animals, Newborn ; Bacterial Proteins ; genetics ; metabolism ; Cells, Cultured ; Cloning, Molecular ; Dental Caries ; prevention & control ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli ; genetics ; Gene Expression ; Glucosyltransferases ; genetics ; metabolism ; Membrane Glycoproteins ; Muscle, Skeletal ; cytology ; metabolism ; Plasmids ; genetics ; Rats ; Rats, Wistar ; Recombinant Fusion Proteins ; genetics ; metabolism ; Streptococcal Vaccines ; genetics ; immunology ; therapeutic use ; Streptococcus mutans ; genetics ; immunology ; Transfection ; Vaccines, DNA ; genetics ; therapeutic use
10.Construction and identification of non-replication recombinant vaccinia virus co-expressing human papillomavirus type 16 L1/L2/E6/E7 proteins.
Wei HUANG ; Hou-wen TIAN ; Jiao REN ; Jiang-tao FAN ; Li ZHAO ; Tao BIAN ; Zhen-hua LU ; Li RUAN
Chinese Journal of Experimental and Clinical Virology 2005;19(3):240-243
OBJECTIVETo generate a human papillomavirus (HPV16) prophylactic and therapeutic vaccine candidate for cervical cancer.
METHODSHPV16 major capsid protein L1 gene/minor capsid protein L2 gene and HPV16 early E6/E7 genes were inserted into a vaccinia virus expression vector. A strain of non-recombinant vaccinia virus containing the sequences was obtained through a homologous recombination and identified.
RESULTSDNA hybridization confirmed that the HPV16L1/L2/E6/E7 genes were integrated into vaccinia virus DNA. Western Blot result showed that full-length L1/L2/E6/E7 proteins were co-expressed in CEF cells infected with the recombinant virus.
CONCLUSIONNTVJE6E7CKL1L2 could be taken as a candidate of prophylactic and therapeutic vaccine for HPV-associated tumors and their precancerous transformations.
Animals ; Blotting, Western ; Capsid Proteins ; genetics ; metabolism ; Cells, Cultured ; Chick Embryo ; Cloning, Molecular ; Female ; Gene Expression ; Genetic Vectors ; genetics ; Humans ; Oncogene Proteins, Viral ; genetics ; metabolism ; Papillomaviridae ; genetics ; immunology ; Papillomavirus E7 Proteins ; Papillomavirus Infections ; immunology ; prevention & control ; virology ; Papillomavirus Vaccines ; genetics ; immunology ; therapeutic use ; Recombinant Fusion Proteins ; genetics ; immunology ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Transfection ; Tumor Virus Infections ; immunology ; prevention & control ; virology ; Uterine Cervical Neoplasms ; immunology ; prevention & control ; virology ; Vaccinia virus ; genetics ; Virus Replication