1.Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy.
Xiaowan LI ; Li ZHANG ; Zuxi FENG ; Yue CHEN ; Xiaofeng ZHU ; Liansheng ZHANG ; Lijuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):64-70
B and T lymphocyte attenuator (BTLA) is an inhibitory immune checkpoint, which typically interacts with herpesvirus entry mediator (HVEM) and plays a crucial role in regulating immune balance. BTLA interacts with its ligand HVEM in a cis manner on the surface of the same immune cell to maintain immune tolerance, while trans interactions on the surface of different immune cells mediate immunosuppressive effects. Dysregulation of the BTLA/HVEM axis can impair the functions of immune cells, particularly T lymphocytes, promoting immune escape of tumor cells and ultimately leading to tumor progression. Researchers have found that BTLA and HVEM are abnormally expressed in various tumors and are associated with prognosis, suggesting that they may be potential targets for tumor immunotherapy. This review summarizes the molecular structures of BTLA and HVEM, immunomodulatory mechanisms, recent advances in hematologic malignancies, potential inhibitors of BTLA/HVEM interaction, and their applications in immunotherapy for hematologic malignancies.
Humans
;
Receptors, Tumor Necrosis Factor, Member 14/chemistry*
;
Receptors, Immunologic/immunology*
;
Hematologic Neoplasms/genetics*
;
Immunotherapy/methods*
;
Animals
2.Preparation and application of bovine CD4 monoclonal antibodies.
Wunjun KONG ; Yueshu ZHU ; Zhengzhong XU ; Chengkun ZHENG ; Xiang CHEN ; Xinan JIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):450-455
Objective To prepare monoclonal antibodies against bovine CD4 and identify their basic biological characteristics. Methods Recombinant bovine CD4 (rHis-BoCD4 and rGST-BoCD4) was successfully expressed and purified by constructing a prokaryotic plasmid of bovine CD4 gene. The bovine CD4 monoclonal antibody was produced using hybridoma technology. The subtype and potency of the monoclonal antibody were identified and analyzed by ELISA, while specificity was analyzed through indirect immunofluorescence assay (IFA) and Western-blot. Results Four hybridoma cell lines, namely, 1H4, 6A10, 3F9 and 4G10, stably secreting monoclonal antibodies against BoCD4 were successfully obtained. The subclasses of the monoclonal antibodies subclass 6A10 was IgG2b and the rest of the monoclonal antibodies were of IgM type. Western-blot results showed that the four anti-bovine CD4 mAb strains were able to specifically bind to the bovine CD4 protein expressed in vitro. Indirect immunofluorescence assay showed that four monoclonal antibodies were able to specifically recognize the natural bovine CD4 protein. Flow cytometry assay showed that 3F9 was best to recognize bovine natural CD4 molecules. Conclusion Four monoclonal antibody strains with high specificity to natural bovine CD4 protein were successfully prepared, which lays the foundation for the subsequent studies on the function of bovine CD4 and diagnosis and treatment of bovine T-lymphocyte diseases.
Animals
;
Antibodies, Monoclonal/isolation & purification*
;
Cattle
;
CD4 Antigens/genetics*
;
Hybridomas/immunology*
;
Antibody Specificity/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Enzyme-Linked Immunosorbent Assay
;
Fluorescent Antibody Technique, Indirect
3.The effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating the SDF-1/CXCR4 signaling pathway.
Ruifang WANG ; Yingchun YANG ; Haibing QIAO ; Ying YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):784-789
Objective To investigate the effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs), and to determine whether its mechanism involves the stromal cell-derived factor 1(SDF-1)/C-X-C chemokine receptor 4 (CXCR4) pathway. Methods BMSCs were divided into six groups: normal culture control group, osteogenic induction model group, low-dose gentiopicroside (L-gentiopicroside, 10 μmol/L) group, medium-dose gentiopicroside (M-gentiopicroside, 20 μmol/L) group, high-dose gentiopicroside (H-gentiopicroside, 40 μmol/L) group, and H-gentiopicroside+SDF-1/CXCR4 pathway inhibitor (AMD3100) group (H-gentiopicroside+AMD3100, 40 μmol/L gentiopicroside+10 μg/mL AMD3100). Cell viability, apoptosis, ALP activity, mineralized nodule formation, and protein levels of the SDF-1/CXCR4 pathway were assessed using the CCK-8 assay, flow cytometry, ALP staining, Alizarin Red S staining, and Western blotting, respectively. Results No mineralized nodules were observed in either the control and model group, although the color of the model group deepened. Compared with the control group, the model group showed significantly increased A value, ALP activity, expression levels of Runt related transcription factor 2 (RUNX2), osteopontin (OPN), SDF-1, CXCR4 proteins, along with a lower apoptosis rate. Compared with the model group, the L-gentiopicroside, M-gentiopicroside and H-gentiopicroside groups showed dose-dependently (L
Humans
;
Receptors, CXCR4/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Chemokine CXCL12/genetics*
;
Iridoid Glucosides/pharmacology*
;
Osteogenesis/drug effects*
;
Cell Differentiation/drug effects*
;
Signal Transduction/drug effects*
;
Cells, Cultured
;
Apoptosis/drug effects*
;
Bone Marrow Cells/metabolism*
4.Expression and Clinical Significance of Co-inhibitory Molecules TIGIT/CD155 and PD-1 in Chronic Lymphocytic Leukemia.
Rui ZHANG ; Shuang CHEN ; Ting-Ting LUO ; Jian-Hua QU
Journal of Experimental Hematology 2025;33(1):54-61
OBJECTIVE:
To investigate the expression of co-inhibitory molecules TIGIT/CD155 and PD-1 on CD4+T cells and Treg cells in peripheral blood of patients with chronic lymphocytic leukemia (CLL) and analyze their clinical significance.
METHODS:
The expression of PD-1 and TIGIT on CD4+T cells and Treg cells was detected by flow cytometry in 40 CLL patients and 20 healthy controls. Additionally, the expression of CD155 on peripheral blood B cells and DC cells of the enrolled subjects was detected.
RESULTS:
The proportions of PD-1+TIGIT+CD4+T cells, PD-1+TIGIT+Treg cells and CD155+DC cells in peripheral blood of CLL patients were significantly higher than those of healthy controls ( P < 0.05). The proportions of PD-1+TIGIT+CD4+T cells and PD-1+TIGIT+Treg cells in CLL patients were significantly higher than those of PD-1+TIGIT-CD4+T cells and PD-1+TIGIT-Treg cells, respectively ( P < 0.05). Both PD-1+TIGIT+CD4+T cells and PD-1+TIGIT+Treg cells were positively correlated with the level of CD155+DC cells (r =0.742, r =0.766). With the progression of Binet stage, the proportions of PD-1+TIGIT+CD4+T cells, PD-1+TIGIT+Treg cells, and CD155+DC cells gradually increased ( P < 0.05), and the aforementioned three types cells were all increased in patients with CD38≥30%, IGVH unmutated, or poor prognosis due to chromosomal abnormalities ( P < 0.05).
CONCLUSION
Co-inhibitory molecules PD-1 and TIGIT may be involved in immunodepletion in patients with advanced CLL, which has clinical prognostic value. Dual inhibitor molecular targeted therapy provides a new direction for the individualized treatment of CLL.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/immunology*
;
Receptors, Immunologic/metabolism*
;
Programmed Cell Death 1 Receptor/metabolism*
;
T-Lymphocytes, Regulatory/metabolism*
;
Receptors, Virus/metabolism*
;
CD4-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Middle Aged
;
Flow Cytometry
;
Clinical Relevance
5.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
6.C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 regulates oxygen glucose deprivation/reoxygenation-induced autophagy in SH-SY5Y neuronal cells.
Haining MENG ; Chao JIA ; Qingshu LI ; Weifeng XIE ; Sumei WANG ; Yan QU
Chinese Critical Care Medicine 2025;37(9):848-855
OBJECTIVE:
To explore the effects and mechanisms of the C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 (CXCL12/CXCR4) signaling axis on apoptosis and autophagy in SH-SY5Y neuronal cells subjected to oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro.
METHODS:
SH-SY5Y cells were divided into the following groups: OGD/R group and non-OGD/R group, with the OGD/R group subjected to OGD/R modeling and the non-OGD/R group receiving no treatment. Cells were also divided into CXCL12+ and CXCL12- groups; the CXCL12+ group received 0.1 mg/L exogenous recombinant CXCL12 (rhCXCL12) at reoxygenation, while the CXCL12- group did not. Another set of cells was divided into CXCL12+AMD3100 and CXCL12 groups; the CXCL12+AMD3100 group was pretreated with 2.5 mg/L AMD3100, a CXCR4 inhibitor, for 2 hours before OGD/R and received both 2.5 mg/L AMD3100 and 0.1 mg/L rhCXCL12 at reoxygenation, whereas the CXCL12 group received rhCXCL12 only. Additionally, cells were divided into small interfering RNA CXCR4 (siCXCR4) and small interfering RNA negative control (siNC) groups; the siCXCR4 group underwent CXCR4 knockdown before OGD/R modeling and received 0.1 mg/L rhCXCL12 at reoxygenation, while the siNC group, transfected with a negative control, received the same treatment. Protein expression of autophagy-related 16 (ATG16), microtubule-associated protein 1 light chain 3 (LC3), aquaporin-3 (AQP3), and CXCR4 was detected by Western blotting. Apoptosis rate and CXCR4 expression were measured by flow cytometry.
RESULTS:
Compared with the non-OGD/R group, the OGD/R group showed a significantly increased apoptosis rate and markedly decreased protein expression levels of ATG16, LC3, AQP3, and CXCR4 (all P < 0.05). CXCR4 fluorescent expression was also significantly reduced, suggesting that OGD/R simultaneously affects neuronal apoptosis and autophagy while inhibiting CXCR4 and AQP3 expression in SH-SY5Y cells. Compared with the CXCL12- group, the CXCL12+ group exhibited no significant change in apoptosis rate but demonstrated significantly increased protein expression of ATG16, LC3, and AQP3 (ATG16/GAPDH: 1.21±0.10 vs. 1.00±0.00; LC3/β-actin: 1.22±0.10 vs. 1.00±0.00; AQP3/β-actin: 1.26±0.04 vs. 1.00±0.00; all P < 0.05). CXCR4 expression was also significantly enhanced (fluorescence intensity: 1.19±0.05 vs. 1.00±0.00, P < 0.05), indicating that CXCL12 may promote autophagy in OGD/R-injured SH-SY5Y cells via the CXCR4/AQP3 pathway. Compared with the CXCL12 group, the CXCL12+AMD3100 group showed no significant difference in apoptosis rate but significantly lower protein levels of ATG16 and LC3 (ATG16/GAPDH: 0.75±0.08 vs. 1.00±0.00; LC3/GAPDH: 0.86±0.07 vs. 1.00±0.00; both P < 0.05), suggesting that CXCL12 induces autophagy in OGD/R SH-SY5Y cells through CXCR4. Compared with the siNC group, the siCXCR4 group showed no significant change in apoptosis rate but significantly reduced protein expression of ATG16, LC3, AQP3, and CXCR4 (ATG16/GAPDH: 0.76±0.06 vs. 1.00±0.00; LC3/GAPDH: 0.79±0.11 vs. 1.00±0.00; AQP3/GAPDH: 0.81±0.05 vs. 1.00±0.00; CXCR4/GAPDH: 0.86±0.04 vs. 1.00±0.00; all P < 0.05), indicating that CXCR4 knockdown suppresses OGD/R-induced autophagy in SH-SY5Y cells likely via AQP3.
CONCLUSIONS
The CXCL12/CXCR4 signaling axis can regulate OGD/R-induced autophagy in SH-SY5Y cells through AQP3 without affecting apoptosis, indicating a role for this pathway in neuronal autophagy during cerebral ischemia/reperfusion injury.
Humans
;
Receptors, CXCR4/metabolism*
;
Chemokine CXCL12/metabolism*
;
Autophagy
;
Glucose/metabolism*
;
Apoptosis
;
Neurons/cytology*
;
Oxygen/metabolism*
;
Signal Transduction
;
Cell Line, Tumor
;
Cell Hypoxia
;
Benzylamines
;
Cyclams
7.MiR-139-5p regulates the Notch/RBP-J/Hes1 axis to promote homing of bone mesenchymal stem cells in bronchial asthma.
Kun WANG ; Haoxiang FANG ; Xiaomei CAO ; Ziheng ZHU
Journal of Southern Medical University 2024;44(12):2283-2290
OBJECTIVES:
To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.
METHODS:
Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining. The changes of BMSC homing after the transfection were observed, and the expressions of Notch1, RBP-J, and Hes1 mRNAs and proteins and Th1/Th2 cytokines were detected with RT-qPCR, Western blotting or ELISA.
RESULTS:
The co-cultures of BMSCs and asthmatic bronchial epithelial cells showed significantly decreased expressions of miR-139-5p, IL-2 and IL-12 and increased expressions of CXCR4, SDF-1, IL-5, IL-9, Notch1, RBP-J, and Hes1. Transfection with miR-139-5p mimics significantly increased the expressions of miR-139-5p, IL-2, CXCR4 and SDF-1 and lowered the expression levels of IL-5, IL-9, Notch1, activated Notch1, and Hes1 in the co-cultured cells. Correlation analysis showed that BMSC homing was positively correlated with miR-139-5p and IL-12 and negatively correlated with IL-5 expression. The expression of CXCR4 was negatively correlated with activated Notch1, and SDF-1 was positively correlated with miR-139-5p but negatively correlated with Notch1 expression.
CONCLUSIONS
High expression of miR-139-5p promotes homing of BMSCs in asthma by targeting the Notch1 signaling pathway to regulate the expressions of Th1/Th2 cytokines, thereby alleviating airway inflammation.
Asthma/genetics*
;
Animals
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/metabolism*
;
Rats
;
Transcription Factor HES-1/genetics*
;
Signal Transduction
;
Receptor, Notch1/genetics*
;
Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics*
;
Receptors, CXCR4/genetics*
;
Coculture Techniques
;
Rats, Sprague-Dawley
;
Chemokine CXCL12/genetics*
;
Epithelial Cells/metabolism*
8.Evaluation of peripheral blood T-lymphocyte subpopulations features in patients with hepatitis B virus-related acute-on-chronic liver failure based on single-cell sequencing technology.
Peng PENG ; Ya Qiu JI ; Ning Hui ZHAO ; Tian LIU ; Han WANG ; Jia YAO
Chinese Journal of Hepatology 2023;31(4):422-427
Objective: T lymphocyte exhaustion is an important component of immune dysfunction. Therefore, exploring peripheral blood-exhausted T lymphocyte features in patients with hepatitis B virus-related acute-on-chronic liver failure may provide potential therapeutic target molecules for ACLF immune dysfunction. Methods: Six cases with HBV-ACLF and three healthy controls were selected for T-cell heterogeneity detection using the single-cell RNA sequencing method. In addition, exhausted T lymphocyte subpopulations were screened to analyze their gene expression features, and their developmental trajectories quasi-timing. An independent sample t-test was used to compare the samples between the two groups. Results: Peripheral blood T lymphocytes in HBV-ACLF patients had different differentiation trajectories with different features distinct into eight subpopulations. Among them, the CD4(+)TIGIT(+) subsets (P = 0.007) and CD8(+)LAG3(+) (P = 0.010) subsets with highly exhausted genes were significantly higher than those in healthy controls. Quasi-time analysis showed that CD4(+)TIGIT(+) and CD8(+)LAG3(+) subsets appeared in the late stage of T lymphocyte differentiation, suggesting the transition of T lymphocyte from naïve-effector-exhausted during ACLF pathogenesis. Conclusion: There is heterogeneity in peripheral blood T lymphocyte differentiation in patients with HBV-ACLF, and the number of exhausted T cells featured by CD4(+)TIGIT(+)T cell and CD8(+)LAG3(+) T cell subsets increases significantly, suggesting that T lymphocyte immune exhaustion is involved in the immune dysfunction of HBV-ACLF, thereby identifying potential effective target molecules for improving ACLF patients' immune function.
Humans
;
Hepatitis B virus
;
Acute-On-Chronic Liver Failure/pathology*
;
Hepatitis B, Chronic
;
T-Lymphocyte Subsets/pathology*
;
Receptors, Immunologic
9.Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma.
Yun Fei SHI ; Hao Jie WANG ; Wei Ping LIU ; Lan MI ; Meng Ping LONG ; Yan Fei LIU ; Yu Mei LAI ; Li Xin ZHOU ; Xin Ting DIAO ; Xiang Hong LI
Journal of Peking University(Health Sciences) 2023;55(3):521-529
OBJECTIVE:
To analyze the clinicopathological features, molecular changes and prognostic factors in angioimmunoblastic T-cell lymphoma (AITL).
METHODS:
Sixty-one cases AITL diagnosed by Department of Pathology of Peking University Cancer Hospital were collected with their clinical data. Morphologically, they were classified as typeⅠ[lymphoid tissue reactive hyperplasia (LRH) like]; typeⅡ[marginal zone lymphoma(MZL)like] and type Ⅲ [peripheral T-cell lymphoma, not specified (PTCL-NOS) like]. Immunohistochemical staining was used to evaluate the presence of follicular helper T-cell (TFH) phenotype, proliferation of extra germinal center (GC) follicular dendritic cells (FDCs), presence of Hodgkin and Reed-Sternberg (HRS)-like cells and large B transformation. The density of Epstein-Barr virus (EBV) + cells was counted with slides stained by Epstein-Barr virus encoded RNA (EBER) in situ hybridization on high power field (HPF). T-cell receptor / immunoglobulin gene (TCR/IG) clonality and targeted exome sequencing (TES) test were performed when necessary. SPSS 22.0 software was used for statistical analysis.
RESULTS:
Morphological subtype (%): 11.4% (7/61) cases were classified as type Ⅰ; 50.8% (31/61) as type Ⅱ; 37.8% (23/61) as type Ⅲ. 83.6% (51/61) cases showed classical TFH immunophenotype. With variable extra-GC FDC meshwork proliferation (median 20.0%); 23.0% (14/61) had HRS-like cells; 11.5% (7/61) with large B transformation. 42.6% (26/61) of cases with high counts of EBV. 57.9% (11/19) TCR+/IG-, 26.3% (5/19) TCR+/IG+, 10.5% (2/19) were TCR-/IG-, and 5.3% (1/19) TCR-/IG+. Mutation frequencies by TES were 66.7% (20/30) for RHOA, 23.3% (7/30) for IDH2 mutation, 80.0% (24/30) for TET2 mutation, and 33.3% (10/30) DNMT3A mutation. Integrated analysis divided into four groups: (1) IDH2 and RHOA co-mutation group (7 cases): 6 cases were type Ⅱ, 1 case was type Ⅲ; all with typical TFH phenotype; HRS-like cells and large B transformation were not found; (2) RHOA single mutation group (13 cases): 1 case was type Ⅰ, 6 cases were type Ⅱ, 6 cases were type Ⅲ; 5 cases without typical TFH phenotype; 6 cases had HRS-like cells, and 2 cases with large B transformation. Atypically, 1 case showed TCR-/IG-, 1 case with TCR-/IG+, and 1 case with TCR+/IG+; (3) TET2 and/or DNMT3A mutation alone group (7 cases): 3 cases were type Ⅱ, 4 cases were type Ⅲ, all cases were found with typical TFH phenotype; 2 cases had HRS-like cells, 2 cases with large B transformation, and atypically; (4) non-mutation group (3 cases), all were type Ⅱ, with typical TFH phenotype, with significant extra-GC FDC proliferation, without HRS-like cells and large B transformation. Atypically, 1 case was TCR-/IG-. Univariate analysis confirmed that higher density of EBV positive cell was independent adverse prognostic factors for both overall survival (OS) and progression free survival(PFS), (P=0.017 and P=0.046).
CONCLUSION
Pathological diagnoses of ALTL cases with HRS-like cells, large B transformation or type Ⅰ are difficult. Although TCR/IG gene rearrangement test is helpful but still with limitation. TES involving RHOA, IDH2, TET2, DNMT3A can robustly assist in the differential diagnosis of those difficult cases. Higher density of EBV positive cells counts in tumor tissue might be an indicator for poor survival.
Humans
;
Epstein-Barr Virus Infections/genetics*
;
Herpesvirus 4, Human/genetics*
;
T-Lymphocytes, Helper-Inducer/pathology*
;
Immunoblastic Lymphadenopathy/pathology*
;
Lymphoma, T-Cell, Peripheral/pathology*
;
Receptors, Antigen, T-Cell
10.Weak SARS-CoV-2-specific responses of TIGIT-expressing CD8 + T cells in people living with HIV after a third dose of a SARS-CoV-2 inactivated vaccine.
Junyan JIN ; Xiuwen WANG ; Yongzheng LI ; Xiaodong YANG ; Hu WANG ; Xiaoxu HAN ; Jin SUN ; Zhenglai MA ; Junyi DUAN ; Guanghui ZHANG ; Tao HUANG ; Tong ZHANG ; Hao WU ; Xin ZHANG ; Bin SU
Chinese Medical Journal 2023;136(24):2938-2947
BACKGROUND:
T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), an inhibitory receptor expressed on T cells, plays a dysfunctional role in antiviral infection and antitumor activity. However, it is unknown whether TIGIT expression on T cells influences the immunological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccines.
METHODS:
Forty-five people living with HIV (PLWH) on antiretroviral therapy (ART) for more than two years and 31 healthy controls (HCs), all received a third dose of a SARS-CoV-2 inactivated vaccine, were enrolled in this study. The amounts, activation, proportion of cell subsets, and magnitude of the SARS-CoV-2-specific immune response of TIGIT + CD4 + and TIGIT + CD8 + T cells were investigated before the third dose but 6 months after the second vaccine dose (0W), 4 weeks (4W) and 12 weeks (12W) after the third dose.
RESULTS:
Compared to that in HCs, the frequency of TIGIT + CD8 + T cells in the peripheral blood of PLWH increased at 12W after the third dose of the inactivated vaccine, and the immune activation of TIGIT + CD8 + T cells also increased. A decrease in the ratio of both T naïve (T N ) and central memory (T CM ) cells among TIGIT + CD8 + T cells and an increase in the ratio of the effector memory (T EM ) subpopulation were observed at 12W in PLWH. Interestingly, particularly at 12W, a higher proportion of TIGIT + CD8 + T cells expressing CD137 and CD69 simultaneously was observed in HCs than in PLWH based on the activation-induced marker assay. Compared with 0W, SARS-CoV-2-specific TIGIT + CD8 + T-cell responses in PLWH were not enhanced at 12W but were enhanced in HCs. Additionally, at all time points, the SARS-CoV-2-specific responses of TIGIT + CD8 + T cells in PLWH were significantly weaker than those of TIGIT - CD8 + T cells. However, in HCs, the difference in the SARS-CoV-2-specific responses induced between TIGIT + CD8 + T cells and TIGIT - CD8 + T cells was insignificant at 4W and 12W, except at 0W.
CONCLUSIONS
TIGIT expression on CD8 + T cells may hinder the T-cell immune response to a booster dose of an inactivated SARS-CoV-2 vaccine, suggesting weakened resistance to SARS-CoV-2 infection, especially in PLWH. Furthermore, TIGIT may be used as a potential target to increase the production of SARS-CoV-2-specific CD8 + T cells, thereby enhancing the effectiveness of vaccination.
Humans
;
Antibodies, Viral
;
CD8-Positive T-Lymphocytes
;
COVID-19/complications*
;
COVID-19 Vaccines/immunology*
;
HIV Infections/complications*
;
Receptors, Immunologic
;
SARS-CoV-2

Result Analysis
Print
Save
E-mail