1.Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy.
Xiaowan LI ; Li ZHANG ; Zuxi FENG ; Yue CHEN ; Xiaofeng ZHU ; Liansheng ZHANG ; Lijuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):64-70
B and T lymphocyte attenuator (BTLA) is an inhibitory immune checkpoint, which typically interacts with herpesvirus entry mediator (HVEM) and plays a crucial role in regulating immune balance. BTLA interacts with its ligand HVEM in a cis manner on the surface of the same immune cell to maintain immune tolerance, while trans interactions on the surface of different immune cells mediate immunosuppressive effects. Dysregulation of the BTLA/HVEM axis can impair the functions of immune cells, particularly T lymphocytes, promoting immune escape of tumor cells and ultimately leading to tumor progression. Researchers have found that BTLA and HVEM are abnormally expressed in various tumors and are associated with prognosis, suggesting that they may be potential targets for tumor immunotherapy. This review summarizes the molecular structures of BTLA and HVEM, immunomodulatory mechanisms, recent advances in hematologic malignancies, potential inhibitors of BTLA/HVEM interaction, and their applications in immunotherapy for hematologic malignancies.
Humans
;
Receptors, Tumor Necrosis Factor, Member 14/chemistry*
;
Receptors, Immunologic/immunology*
;
Hematologic Neoplasms/genetics*
;
Immunotherapy/methods*
;
Animals
2.Berberine inhibits macrophage foam cell formation through activation of ACE2-Ang(1-7)-Mas signaling pathway.
Qin ZHANG ; Songhao HU ; Junxia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):978-984
Objective This study aims to investigate the effect of berberine (Ber) on foam cell formation induced by oxidized low-density lipoprotein (ox-LDL) in macrophages and to explore the mechanism's association with the ACE2-Ang(1-7)-Mas axis. Methods They were randomly divided into blank group, model group (RAW264.7 cells induced with 60 μg/mL ox-LDL), and berberine group (the model treated with berberine interventions at 2.5, 5, and 10 μmol/L concentrations). Lipid accumulation within the cells was assessed by Oil Red O staining, and the content of lipid droplets in each group was quantitatively analyzed by enzymatic method. The content of total cholesterol (TC) and free cholesterol (FC) in foam cells were detected by enzymatic method. The levels of oxidative stress factors (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH)), inflammatory factors such as tumor necrosis factor α(TNF-α), and nitric oxide (NO) were measured using corresponding relevant reagent kits. The mRNA and protein expressions of ACE2 and Mas were evaluated through quantitative real-time PCR and Western blot analysis, respectively. The levels of AngII and Ang(1-7) were detected by ELISA. Results Compared with the model group, the berberine groups exhibited reduced lipid droplet accumulation and a dose-dependent decrease in intracellular lipid content. Berberine significantly lowered TC and FC levels in foam cells and reduced the CE/TC ratio. The levels of the oxidative factor MDA were significantly reduced, while the levels of the antioxidant factors SOD and GSH were markedly increased. Inflammatory factors TNF-α and NO were significantly decreased. The expression of the ACE2-Ang(1-7)-Mas signaling pathway was significantly activated, and the effect was more pronounced in the Ber group with high-concentration compared to the group with low-concentration, demonstrating a dose-dependent response. Conclusion Berberine can inhibit macrophage foam cell formation, potentially through upregulation of the ACE2-Ang(1-7)-Mas signaling pathway, thereby contributing to the alleviation of atherosclerosis.
Berberine/pharmacology*
;
Foam Cells/cytology*
;
Animals
;
Signal Transduction/drug effects*
;
Mice
;
Angiotensin-Converting Enzyme 2
;
Angiotensin I/genetics*
;
Peptidyl-Dipeptidase A/genetics*
;
Peptide Fragments/genetics*
;
Receptors, G-Protein-Coupled/genetics*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins/genetics*
;
Proto-Oncogene Mas
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
3.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
4.Advances in pharmacological research for retinopathy of prematurity.
Yanxi XIE ; Suilian ZHENG ; Hui YANG
Journal of Zhejiang University. Medical sciences 2025;54(3):411-421
Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease that threatens the vision of premature infants. Various novel drugs have demonstrated therapeutic potential for ROP by targeting signaling pathways associated with vascular endothelial growth factor (VEGF) [such as PI3K/AKT, hypoxia-inducible factor (HIF)-1α/VEGF], oxidative stress, tumor necrosis factor (TNF)-α, and Notch pathways. Propranolol, insulin-like growth factor-1, and celecoxib attenuate pathological neovascularization via the PI3K/Akt signaling pathway. Tripterine and melatonin inhibit retinal neovascularization by modulating the HIF-1α/VEGF signaling axis. Adiponectin mitigates the damage caused by oxidative stress and preserves endothelial function by enhancing endothelial nitric oxide synthase activity. Omega-3 polyunsaturated fatty acids suppress TNF-α-mediated inflammatory responses, modulate retinal development and angiogenesis, and reduce retinal neovascular lesions. DAPT, a γ-secretase inhibitor, blocks Notch signaling to suppress abnormal vascular proliferation. These agents exhibit synergistic multi-pathway anti-angiogenic effects in preclinical models and early-phase clinical trials, offering critical insights for advancing drug development and clinical translation in ROP management.
Retinopathy of Prematurity/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Infant, Newborn
;
Vascular Endothelial Growth Factor A/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Oxidative Stress/drug effects*
;
Fatty Acids, Omega-3/therapeutic use*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Receptors, Notch/metabolism*
;
Angiogenesis Inhibitors/therapeutic use*
;
Insulin-Like Growth Factor I/therapeutic use*
5.The Predictive Value of Serum sIL-2R Combined with TNF-α, IgG and IgA in the Recurrence of Multiple Myeloma.
Ping LIN ; Ya-Lan ZHANG ; Ruo-Teng XIE ; Xue-Ya ZHANG
Journal of Experimental Hematology 2025;33(1):150-156
OBJECTIVE:
To investigate the predictive value of serum soluble interleukin-2 receptor(sIL-2R), tumor necrosis factor alpha(TNF-α), IgG and IgA for the recurrence in patients with multiple myeloma(MM).
METHODS:
A total of 108 MM patients who were initially diagnosed and treated in our hospital from January 2017 to March 2019, and 72 patients who met the diagnostic criteria and had complete follow-up data were selected as the study subjects. MM recurrence was the endpoint event, and follow-up was conducted until the occurrence of the endpoint event or the deadline of this study. MM patients were divided into recurrent group(RG) and non-recurrent group(NRG) based on whether they have relapsed or not. Venous blood was collected from patients at the first diagnosis and follow-up (at the occurrence of endpoint events or termination of the study), and enzyme-linked immunosorbent assay(ELISA) was used to detect sIL-2R and TNF-α levels in the patient's serum. An automatic immune analyzer was used to detect the levels of IgG and IgA in the patient's serum. The differences in expression levels of the factors between two groups were compared and the correlations between sIL-2R and TNF-α, IgG and IgA at the first diagnosis and follow-up were analyzed. At the same time, venous blood was collected from patients during complete remission, and their serum sIL- 2R levels were measured to compare the differences in sIL-2R expression levels at the first diagnosis, complete remission and recurrence. Receiver operating characteristic(ROC) curves was used to determine the optimal cutoff values for serum sIL-2R, TNF-α, IgG and IgA, and the predictive value of sIL-2R, TNF-α, IgG and IgA in the recurrence of MM patients were analyzed based on the area under the curve(AUC).
RESULTS:
The serum sIL-2R levels of MM patients at the first diagnosis and recurrence were significantly higher than at complete remission (P < 0.05). At the first diagnosis, the hemoglobin content of RG was lower than that of NRG, while the β2-microglobulin content was higher than that of NRG (P < 0.001). There was no significant difference in other clinical parameters between the two groups (P >0.05). The levels of sIL-2R, TNF-α, IgG and IgA at the first diagnosis and follow-up of RG were higher than those of NRG (P < 0.05). There was a significant correlation between sIL-2R and TNF-α, IgG and IgA at the first diagnosis and follow-up (P < 0.001). The ROC curve showed that, at the first diagnosis, sIL-2R, TNF-α, IgG and IgA predicted the AUC of MM patients were 0.919, 0.850, 0.766 and 0.795, respectively, after follow-up, they predicted AUC of MM were 0.890, 0.815, 0.760 and 0.794, respectively (P < 0.001).
CONCLUSION
The serum sIL-2R has the highest predictive value for MM patient's recurrence, and it is possible to detect the TNF-α, IgG and IgA levels at specific times to infer changes in sIL-2R levels and evaluate the patient's prognosis.
Humans
;
Multiple Myeloma/blood*
;
Immunoglobulin A/blood*
;
Immunoglobulin G/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
Receptors, Interleukin-2/blood*
;
Recurrence
;
Male
;
Female
;
Neoplasm Recurrence, Local
;
Middle Aged
;
Prognosis
6.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
7.The increased risk of exposure to fine particulate matter for depression incidence is mediated by elevated TNF-R1: the Healthy Aging Longitudinal Study.
Ta-Yuan CHANG ; Ting-Yu ZHUANG ; Yun-Chieh YANG ; Chih-Cheng HSU ; Wan-Ju CHENG
Environmental Health and Preventive Medicine 2025;30():49-49
BACKGROUND:
Depression among older adults is an important public health issue, and air and noise pollution have been found to contribute to exacerbation of depressive symptoms. This study examined the association of exposure to air and noise pollutants with clinically-newly-diagnosed depressive disorder. The mediating role of individual pro-inflammatory markers was explored.
METHODS:
We linked National Health Insurance claim data with 2998 healthy community-dwellers aged 55 and above who participated in the Healthy Aging Longitudinal Study between 2009 and 2013. Newly diagnosed depressive disorder was identified using diagnostic codes from the medical claim data. Pollutants were estimated using nationwide land use regression, including PM2.5 and PM10, carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, and road traffic noise. Cox proportional hazard models were employed to examine the association between pollutants and newly developed depressive disorders. The mediating effect of serum pro-inflammatory biomarkers on the relationship was examined.
RESULTS:
Among the 2998 participants, 209 had newly diagnosed depressive disorders. In adjusted Cox proportional hazard models, one interquartile range increase in PM2.5 (8.53 µg/m3) was associated with a 17.5% increased hazard of developing depressive disorders. Other air pollutants and road traffic noise were not linearly associated with depressive disorder incidence. Levels of serum tumor necrosis factor receptor 1 mediated the relationship between PM2.5 and survival time to newly onset depressive disorder.
CONCLUSION
PM2.5 is related to an increased risk of newly developed depressive disorder among middle-aged and older adults, and the association is partially mediated by the pro-inflammatory marker TNF-R1.
Humans
;
Particulate Matter/analysis*
;
Male
;
Female
;
Middle Aged
;
Longitudinal Studies
;
Aged
;
Incidence
;
Air Pollutants/analysis*
;
Environmental Exposure/adverse effects*
;
Taiwan/epidemiology*
;
Receptors, Tumor Necrosis Factor, Type I/blood*
;
Proportional Hazards Models
;
Biomarkers/blood*
;
Depression/epidemiology*
;
Aged, 80 and over
;
Depressive Disorder/chemically induced*
;
Risk Factors
;
Air Pollution/adverse effects*
8.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
9.G protein-coupled estrogen receptor alleviates lung injury in mice with exertional heat stroke by inhibiting ferroptosis.
Ziwei HAN ; Jiansong GUO ; Xiaochen WANG ; Zhi DAI ; Chao LIU ; Feihu ZHOU
Chinese Critical Care Medicine 2025;37(3):268-274
OBJECTIVE:
To investigate whether the G protein-coupled estrogen receptor (GPER) can attenuates acute lung injury in mice with exertional heat stroke (EHS) by inhibiting ferroptosis.
METHODS:
Sixty SPF-grade male C57BL/6 mice were randomly divided into four groups: normal control group (control group), EHS model group (EHS group), dimethyl sulfoxide (DMSO) solvent group (EHS+DMSO group), and GPER-specific agonist G1 group (EHS+G1 group), with 15 mice in each group. All mice underwent 14 days of adaptive training at 24-26 centigrade before modeling, and the EHS model was established using a high-temperature treadmill device. After successful modeling, the mice were allowed to cool naturally at room temperature. In the EHS+G1 group, 40 μg/kg of the GPER-specific agonist G1 was slowly injected intraperitoneally immediately after modeling. In the EHS+DMSO group, 40 μg/kg of DMSO was slowly injected intraperitoneally immediately after modeling. The control group received no treatment. Five hours after modeling, abdominal aortic blood was collected, and lung tissues were harvested after euthanasia. The lung coefficient was calculated to evaluate lung injury. Lung histopathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and a lung histopathological score was assigned. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and Fe2+ in lung tissue. Immunofluorescence was used to detect the expression of glutathione peroxidase 4 (GPX4). Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of GPX4, ferroportin 1 (FPN1), and ferritin heavy chain 1 (FTH1). Western blotting was performed to detect the protein expression of GPX4, FPN1, and FTH1.
RESULTS:
Compared with the control group, the lung coefficient and lung histopathological score were significantly increased in the EHS group. HE staining showed significant thickening and unevenness of the alveolar septa and alveolar walls, partial alveolar collapse, and extensive erythrocyte, inflammatory cell, and plasma-like material extravasation in the alveolar spaces. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly elevated. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue. Western blotting and RT-PCR showed significantly reduced protein and mRNA expression of GPX4, FPN1, and FTH1 in lung tissue. Compared with the EHS group, the EHS+G1 group showed a significant reduction in lung coefficient and lung histopathological score [lung coefficient (mg/g): 3.9±0.1 vs. 4.6±0.3, lung histopathological score: 4.2±0.2 vs. 6.9±0.2, both P < 0.05]. HE staining revealed reduced severity of lung tissue fluid extravasation, inflammatory infiltration, decreased hemorrhage, and less severe alveolar structural damage. Serum levels of TNF-α, IL-1β, MDA, and Fe2+ were significantly reduced [TNF-α (ng/L): 44.3±0.2 vs. 64.6±0.3, IL-1β (ng/L): 69.3±0.4 vs. 97.8±0.2, MDA (nmol/L): 2.8±0.3 vs. 3.6±0.5, Fe2+ (nmol/L): 0.021±0.004 vs. 0.028±0.004, all P < 0.05]. Immunofluorescence staining showed a significant decrease in GPX4-positive expression in lung tissue (fluorescence intensity: 35.53±2.41 vs. 16.45±0.31, P < 0.05). RT-PCR and Western blotting showed significantly increased mRNA and protein expression of GPX4, FPN1, and FTH1 in lung tissue [mRNA expression: GPX4 mRNA (2-ΔΔCt): 0.44±0.05 vs. 0.09±0.01, FPN1 mRNA (2-ΔΔCt): 0.77±0.17 vs. 0.42±0.14, FTH1 mRNA (2-ΔΔCt): 0.75±0.04 vs. 0.58±0.01; protein expression: GPX4/β-actin: 0.96±0.11 vs. 0.24±0.04, FPN1/β-actin: 1.26±0.21 vs. 0.44±0.14, FTH1/β-actin: 0.27±0.12 vs. 0.15±0.07; all P < 0.05]. However, there were no statistically significant differences in any of the above indicators between the EHS+DMSO group and the EHS group.
CONCLUSION
Activation of GPER can attenuate EHS-related lung injury in mice, and its mechanism may be related to the activation of the GPX4 signaling pathway and inhibition of ferroptosis.
Animals
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Heat Stroke/metabolism*
;
Receptors, G-Protein-Coupled
;
Ferroptosis
;
Receptors, Estrogen
;
Acute Lung Injury/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/metabolism*
;
Lung Injury
;
Lung/metabolism*
10.Pachymic acid protects against Crohn's disease-like intestinal barrier injury and colitis in miceby suppressingintestinal epithelial cell apoptosis via inhibiting PI3K/AKT signaling.
Rongrong SHAO ; Zi YANG ; Wenjing ZHANG ; Nuo ZHANG ; Yajing ZHAO ; Xiaofeng ZHANG ; Lugen ZUO ; Sitang GE
Journal of Southern Medical University 2023;43(6):935-942
OBJECTIVE:
To investigate the effect of pachymic acid (PA) against TNBS-induced Crohn's disease (CD)-like colitis in mice and explore the possible mechanism.
METHODS:
Twenty-four C57BL/6J mice were randomized equally into control group, TNBS-induced colitis model group and PA treatment group. PA treatment was administered via intraperitoneal injection at the daily dose of 5 mg/kg for 7 days, and the mice in the control and model groups were treated with saline. After the treatments, the mice were euthanized for examination of the disease activity index (DAI) of colitis, body weight changes, colon length, intestinal inflammation, intestinal barrier function and apoptosis of intestinal epithelial cells, and the expressions of TNF-α, IL-6 and IL-1β in the colonic mucosa were detected using ELISA. The possible treatment targets of PA in CD were predicted by network pharmacology. String platform and Cytoscape 3.7.2 software were used to construct the protein-protein interaction (PPI) network. David database was used to analyze the GO function and KEGG pathway; The phosphorylation of PI3K/AKT in the colonic mucosal was detected with Western blotting.
RESULTS:
PA significantly alleviated colitis in TNBS-treated mice as shown by improvements in the DAI, body weight loss, colon length, and histological inflammation score and lowered levels of TNF-α, IL-6 and IL-1β. PA treatment also significantly improved FITC-dextran permeability, serum I-FABP level and colonic transepithelial electrical resistance, and inhibited apoptosis of the intestinal epithelial cells in TNBS-treated mice. A total of 248 intersection targets were identified between PA and CD, and the core targets included EGFR, HRAS, SRC, MMP9, STAT3, AKT1, CASP3, ALB, HSP90AA1 and HIF1A. GO and KEGG analysis showed that PA negatively regulated apoptosis in close relation with PI3K/AKT signaling. Molecular docking showed that PA had a strong binding ability with AKT1, ALB, EGFR, HSP90AA1, SRC and STAT3. In TNBS-treated mice, PA significantly decreased p-PI3K and p-AKT expressions in the colonic mucosa.
CONCLUSION
PA ameliorates TNBS-induced intestinal barrier injury in mice by antagonizing apoptosis of intestinal epithelial cells possibly by inhibiting PI3K/AKT signaling.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Crohn Disease
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Interleukin-6
;
Molecular Docking Simulation
;
Tumor Necrosis Factor-alpha
;
Colitis/chemically induced*
;
Inflammation
;
Apoptosis
;
ErbB Receptors

Result Analysis
Print
Save
E-mail