1.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
2.Research Progress of Abnormal Iron Metabolism and Tumor of Lymphatic Hematopoiesis System --Review.
Journal of Experimental Hematology 2022;30(4):1277-1280
Iron metabolism is the process of absorption, transport, storage and conversion and excretion of the essential trace element iron in living organisms. Normal iron metabolism tightly regulates iron content at the systemic and cellular levels through a variety of related proteins to prevent excessive free radicals from being generated during the iron cycle that can damage the body. Various abnormalities in iron metabolism are found in a variety of lymphohaematopoietic tumours and an insidious link between iron metabolism and tumour development has been revealed. Serum ferritin levels and abnormalities of iron transport proteins, transferrin and their receptors can be used as prognostic indicators for lymphohematopoietic tumours and have opened up new directions of diagnosis and treatment, with a large number of novel drugs targeting tumours emerging to date. This article briefly describes the normal iron metabolism process and highlights the progress of research on abnormal iron metabolism in lymphohematopoietic tumors at the systemic and cellular levels.
Hematopoiesis
;
Humans
;
Iron/metabolism*
;
Neoplasms
;
Receptors, Transferrin/metabolism*
;
Transferrin/metabolism*
3.Progress on epigenetic regulation of iron homeostasis.
Lingyan DUAN ; Xiangju YIN ; Hong'en MENG ; Xuexian FANG ; Junxia MIN ; Fudi WANG
Journal of Zhejiang University. Medical sciences 2020;49(1):58-70
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(), transferrin receptor 1(), transferrin receptor 2(), ferroportin(), hepcidin(), hemojuvelin() and . Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of , and bone morphogenetic protein 6 () genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses gene expression. On the contrary, HADC inhibitor upregulates gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Epigenesis, Genetic
;
Gene Expression Regulation
;
genetics
;
Homeostasis
;
Humans
;
Iron
;
metabolism
;
Receptors, Transferrin
4.Hepcidin and iron parameters in children with anemia of chronic disease and iron deficiency anemia.
Gunjan MAHAJAN ; Sunita SHARMA ; Jagdish CHANDRA ; Anita NANGIA
Blood Research 2017;52(3):212-217
BACKGROUND: Anemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the two most prevalent forms of anemia having interrelated characteristics. Hepcidin, a newly introduced biomarker for assessment of iron status, is a homeostatic regulator of iron metabolism. We investigated the role of hepcidin and other conventional iron parameters to assess iron status among children with ACD and IDA. We also identified children with ACD who developed iron deficiency (ID). METHODS: The study was undertaken in anemic children with 30 cases each of ACD and IDA along with 30 age and sex-matched controls. The ACD cases were subdivided into pure ACD and ACD with coexistent ID. All cases were subjected to following tests: complete blood count with peripheral smear, serum C-reactive protein, serum interleukin-6, iron studies, serum soluble transferrin receptor (sTfR), and serum hepcidin. RESULTS: The mean serum hepcidin concentration was significantly increased in pure ACD patients (143.85±42.76 ng/mL) as compared to those in IDA patients (6.01±2.83 ng/mL, P < 0.001) and controls (24.96±9.09 ng/mL, P <0.001). Also, compared to pure ACD patients [normal sTfR levels (<3 µg/mL)], the serum hepcidin concentration was reduced significantly in ACD patients with ID [high sTfR levels (≥3 µg/mL)] with a mean of 10.0±2.97 ng/mL. CONCLUSION: Hepcidin measurement can provide a useful tool for differentiating ACD from IDA and also help to identify an iron deficiency in ACD patients. This might aid in the appropriate selection of therapy for these patients.
Anemia*
;
Anemia, Iron-Deficiency*
;
Blood Cell Count
;
C-Reactive Protein
;
Child*
;
Chronic Disease*
;
Hepcidins*
;
Humans
;
Interleukin-6
;
Iron*
;
Metabolism
;
Receptors, Transferrin
5.Questions about horse spleen ferritin crossing the blood brain barrier via mouse transferrin receptor 1.
Kelong FAN ; Meng ZHOU ; Xiyun YAN
Protein & Cell 2017;8(11):788-790
Animals
;
Blood-Brain Barrier
;
metabolism
;
Ferritins
;
metabolism
;
Horses
;
Mice
;
Receptors, Transferrin
;
metabolism
;
Spleen
;
chemistry
6.Influence of GATA-1 on Expression of EpoR in Bone Marrow CD71+ Cells of Rat Model with High Altitude Polycythemia.
Fang LIU ; Jin DING ; Wei WEI ; Ting-Ting FENG ; Yin CHEN ; Lin-Hua JI ; Yuan-Fang HAN
Journal of Experimental Hematology 2016;24(3):884-891
OBJECTIVETo explore the influence of GATA-1 on expression of EpoR in bone marrow CD71+ cells of rat model with high altitude polycythemia (HAPC).
METHODSForty-eight male SD rats were randomly divided into normal control and HAPC model group. HAPC model was established at the altitude of 4 300 meters in the natural environment, and verified by bone marrow cell counts and hematological parameters. Myeloid CD71+ cells were separated by the density gradient centrifugation combined with magnetic activated cell sorting. The expression of EpoR on cell membrane was detected by flow cytometry and cell immunofluorescence. The expression changes of GATA-1 and EpoR mRNA and protein were detected by Q-PCR and Western blot, respectively. CD71+ cells were cultured under normoxia and hypoxia, respectively. After transfection for 96 h, the optimal interference sequence GATA-1 shRNA1 was selected. And the mRNA and protein expression level of GATA-1 and EpoR were detected by Q-PCR and Western blot respectively.
RESULTSThe animal model with HAPC was established successfully and comfirmed by the bone marrow cell counting and the hematologic parameters in comparison with that of the normal control. EpoR expression on the myeloid CD71+ cell membrane in HAPC group was significantly higher than that in normal control (P<0.05). The expression of GATA-1 and EpoR in myeloid CD71+ cells of HAPC group was higher than that in control group (P<0.05). The mRNA and protein expression of GATA-1 and EpoR in two groups positively correlated (control group, r=0.929, P<0.01, r=0.802, P<0.05; HAPC group, r=0.822, P<0.05, r=0.839, P<0.01). However, the mRNA and protein expression of EpoR at normoxia and hypoxia was significantly lower than that in negative control group after interfernce with GATA-1 shRNA1 for 96 h (P<0.05). And the expression of GATA-1 and EpoR under hypoxia was higher than that in normoxia.
CONCLUSIONThe effect of GATA-1 on EpoR expression may be correlated with the pathogenesis of HAPC.
Altitude ; Animals ; Antigens, CD ; metabolism ; Bone Marrow Cells ; metabolism ; Cell Separation ; Disease Models, Animal ; Flow Cytometry ; GATA1 Transcription Factor ; metabolism ; Male ; Polycythemia ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptors, Erythropoietin ; metabolism ; Receptors, Transferrin ; metabolism
7.Progress on anti-tumor molecular mechanisms of dihydroartemisinin.
Peng CAO ; Dongjin LENG ; Ying LI ; Ziwei ZHANG ; Lei LIU ; Xiaoyan LI
Journal of Zhejiang University. Medical sciences 2016;45(5):501-507
Artemisinin is an anti-malarial drug with poor water solubility and oral absorption; so a variety of derivatives based on the parent nucleus have been developed. Compared with artemisinin, dihydroartemisinin (DHA) has a stronger anti-malaria activity, and has the advantages of high metabolic rate and better water solubility. Recent studies have discovered that DHA has a good inhibitory effect on tumor cells, which is closely related to the peroxide bridge in its molecular structure. Since tumor cells need more Fethan normal cells, there are a large number of transferrin receptors on the tumor cell membrane. DHA can break the peroxide bridge in the presence of Fe, and the free radicals generated can play its lethal effect on tumor cells. In addition, DHA can promote endocytosis of transferrin receptor, and thus prevent cancer cells from taking Fefrom microenvironment. This article reviews the anti-tumor molecular mechanism of DHA, including accelerating oxidative damage, inducing apoptosis, inhibiting the growth, proliferation and invasion of tumor cells, reversing tumor multidrug resistance.
Antigens, CD
;
drug effects
;
metabolism
;
Antineoplastic Agents
;
pharmacokinetics
;
pharmacology
;
Apoptosis
;
drug effects
;
Artemisinins
;
metabolism
;
pharmacokinetics
;
pharmacology
;
Endocytosis
;
drug effects
;
Free Radicals
;
chemical synthesis
;
pharmacology
;
Humans
;
Iron
;
metabolism
;
Neoplasms
;
drug therapy
;
physiopathology
;
Oxidative Stress
;
drug effects
;
Receptors, Transferrin
;
drug effects
;
metabolism
8.Potential detrimental effect of soy isoflavones on testis sertoli cells.
Dejiao YIN ; Yanfeng ZHU ; Linxi LIU ; Hua XU ; Jie HUANG ; Yun LI
Journal of Central South University(Medical Sciences) 2014;39(6):598-604
OBJECTIVE:
To determine the effect of soy isoflavones on cell proliferation and the transcription levels of follicle-stimulating hormone receptor (FSHR), inhibin α (INHα), INHβB, androgen binding protein (ABP), transferrin (Tf) and vimentin in testis sertoli cells in SD rats.
METHODS:
Sertoli cells were cultured in vitro, exposed to daidzein at 0.03, 0.3, 3, and 30 μmol/L and genistein at 0.05, 0.5, 5 and 50 μmol/L, respectively. MTT was used to detect the proliferation of sertoli cells. Real-time PCR was used to detect the relative mRNA expressions of FSHR, INHα, INHβB, ABP, Tf and vimentin.
RESULTS:
Compared with control groups, cell proliferation and the relative mRNA expression levels of INHβB and ABP in the treated cells showed no significant alternation. The INHα mRNA expression levels were increased in 0.3 and 3 μmol/L Dai and 0.05 μmol/L Gen, while the mRNA expression levels of FSHR were downregulated in 30 μmol/L Dai and Gen at all concentrations. Tf mRNA expression levels were downregulated in 30 μmol/L Dai and 5 μmol/L and 50 μmol/L Gen, and the mRNA expression levels of vimentin were downregulated in 3 and 30 μmol/L Dai and 50 μmol/L Gen.
CONCLUSION
Soy Isoflavones may have potential detrimental effect on the male reproductive system, as they may impact the function of sertoli cells by downregulating the transcription levels of some important proteins.
Androgen-Binding Protein
;
metabolism
;
Animals
;
Inhibin-beta Subunits
;
metabolism
;
Inhibins
;
metabolism
;
Isoflavones
;
adverse effects
;
Male
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, FSH
;
metabolism
;
Sertoli Cells
;
drug effects
;
Soybeans
;
chemistry
;
Testis
;
cytology
;
drug effects
;
Transferrin
;
metabolism
9.Application of flow cytometry in detecting dysplasia of myelodysplastic syndromes.
Journal of Experimental Hematology 2013;21(4):1069-1072
Myelodysplastic syndrome (MDS) is a heterogeneous disease characterized by dysplasia and ineffective hematopoiesis. The dysplasia is crucial in the diagnosis of MDS, but the morphologic abnormalities of bone marrow cells are not specific for MDS. When the morphological evaluation of marrow dysplasia and cytogenetics can not give enough informations, for diagnosis of MDS, the application of flow cytometry (FCM) for immunophenotyping in MDS will become particularly important. Multiparametric evaluation of myeloid, monocytic maturation and antigen expression pattern contribute to the identification of two or more aberrancies in MDS cases. FCM evaluation of erythroid dysplasia is particularly difficult, because of the limited availability of specific markers. By analyzing the proteins involved in cellular iron metabolism, MDS erythroid cells present an "iron-loaded" phenotype characterized by increased ferritin contents and reduced transferrin receptor, which reflects the degree of dysplasia assessed by morphology. The proportion of CD34(+) cells increased, abnormal expression of surface antigen is also important. The application of flow cytometry in detecting dysplasia of myelodysplastic syndrome is discussed in this article.
Bone Marrow Cells
;
pathology
;
Erythroid Cells
;
metabolism
;
Flow Cytometry
;
Humans
;
Myelodysplastic Syndromes
;
blood
;
diagnosis
;
pathology
;
Receptors, Transferrin
;
metabolism
10.Clinical study of iron metabolism indicators in ineffective hematopoiesis of myelodysplastic syndrome.
Ying YANG ; Bo YANG ; Zhi-Peng LIANG
Journal of Experimental Hematology 2013;21(4):948-952
This study was purposed to investigate the iron metabolism changes and their clinical significance in myelodysplastic syndrome (MDS). Thirty eight transfusion independent MDS patients and 49 controls (21 AA patients, 28 normal volunteers) were enrolled in this study. The iron metabolism indicators including serum iron protein (SF), serum iron (SI), transferrin protein (Tf), total iron binding capacity (TIBC), transferrin saturation (TS), soluble transferrin receptor (sTfR) were detected, the intracellular and extracellular iron distribution were observed under microscope, the chromosome karyotype was analysis by FISH. The results showed that the serum SF, SI and TS levels in MDS group were lower than those in AA group, the serum SF value was higher than that in normal control group. There was no statistical difference between the SI, TS levels as compared with normal control group. The SI, TS levels showed a positive correlation with SF level(r = 0.281, P = 0.007; r = 0.338, P = 0.001, respectively). The serum TIBC in MDS group was no statistically significant difference from that in the control group. The Tf level in MDS group was higher than that in AA and normal control groups, and Tf level between later 2 groups did not show statistical difference. The proportion of sideroblasts in MDS group (57.19 ± 19.11%)was higher than that in AA group (35.00 ± 20.67%). The extracellular iron (+ + +- + + + +) (24%)was lower than that in AA group (33%), and bone marrow particle dyeable iron displayed mainly cocci-like distribution under microscope in patients with increased extracellular iron (+ + +- + + + +), while small need or massive distribution was observed in AA group.In addition, the abnormal chromosome karyotype was found in 15 out of 19 MDS cases (79%). There was no difference in iron metabolism indicators between the high-risk group and the low-risk group of MDS divided according to the International Prognostic Scoring System (WPSS). It is concluded that the iron loading in transfusion-independent patients obviously increases, displaying the enhancement of SF, Tf, intra-and extra-cellular iron, but lower than those in AA patients. It suggests that the abnormality exists in process of use, storage and discharge of iron in MDS patients.
Adult
;
Case-Control Studies
;
Female
;
Ferritins
;
blood
;
Hematopoiesis
;
Humans
;
Iron
;
blood
;
metabolism
;
Male
;
Middle Aged
;
Myelodysplastic Syndromes
;
blood
;
metabolism
;
physiopathology
;
Receptors, Transferrin
;
metabolism
;
Transferrin
;
metabolism

Result Analysis
Print
Save
E-mail