1.Thyroid hormone action in metabolic regulation.
Yiyun SONG ; Xuan YAO ; Hao YING
Protein & Cell 2011;2(5):358-368
Thyroid hormone plays pivotal roles in growth, differentiation, development and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. The transcriptional activity of TRs is modulated by multiple factors including various TR isoforms, diverse thyroid hormone response elements, different heterodimeric partners, coregulators, and the cellular location of TRs. In the present review, we summarize recent advance in understanding the molecular mechanisms of thyroid hormone action obtained from human subject research, thyroid hormone mimetics application, TR isoform-specific knock-in mouse models, and mitochondrion study with highlights in metabolic regulations. Finally, as future perspectives, we share our thoughts about current challenges and possible approaches to promote our knowledge of thyroid hormone action in metabolism.
Animals
;
Gene Knockout Techniques
;
Humans
;
Mice
;
Mitochondria
;
metabolism
;
Protein Isoforms
;
genetics
;
metabolism
;
physiology
;
Receptors, Thyroid Hormone
;
metabolism
;
Thyroid Diseases
;
metabolism
;
pathology
;
Thyroid Hormones
;
genetics
;
metabolism
;
physiology
2.Prokaryotic expression and polyclonal antibody preparation of TRalphaA in Japanese flounder Paralichthys olivaceus.
Liang JIA ; Zhiyi SHI ; Junling ZHANG
Chinese Journal of Biotechnology 2009;25(7):999-1006
To study the role of the thyroid hormone receptor TRalphaA involved in the process of the metamorphic development of Japanese flounder, we firstly cloned the TRalphaA gene, then ligated into the fusion expression vector pET30a and expressed in Escherichia coli DE3 (BL21) host cells. After induced for 4 h with 1 mmol/L Isopropyl beta-D-Thiogalactoside, the target fusion protein was successfully expressed and identified in inclusion bodies by SDS-PAGE and Western blotting. The recombinant protein was denatured and purified by His-Bind resin, then renatured through gradient washing on His-bind resin column. After that, polyclonal antibody was prepared by immunizing New Zealand rabbits with purified protein. Dot blotting analysis showed the antibody with the titer of 1:200 000 reacted specifically to the expressed recombinant protein. Furthermore, a chromatin immunoprecipitation assay was performed to identify the specific binding between the antibody and TRalphaA in living cells of Japanese flounder. The result showed that thyroid hormone was involved in the alkaline phosphatase (ALP) gene transcriptional regulation through TRalphaA in vivo.
Alkaline Phosphatase
;
genetics
;
immunology
;
Animals
;
Antibodies
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
Flounder
;
physiology
;
Metamorphosis, Biological
;
physiology
;
Rabbits
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Thyroid Hormone Receptors alpha
;
biosynthesis
;
genetics
;
immunology
3.The functional role of the CARM1-SNF5 complex and its associated HMT activity in transcriptional activation by thyroid hormone receptor.
Hyo Kyoung CHOI ; Kyung Chul CHOI ; So Young OH ; Hee Bum KANG ; Yoo Hyun LEE ; Seungjoo HAAM ; Yong Ho AHN ; Kyung Sup KIM ; Kunhong KIM ; Ho Geun YOON
Experimental & Molecular Medicine 2007;39(4):544-555
We have investigated the function and mechanisms of the CARM1-SNF5 complex in T3-dependent transcriptional activation. Using specific small interfering RNAs (siRNA) to knock down coactivators in HeLa alpha2 cells, we found that coactivator associated arginine methyltransferase 1 (CARM1) and SWI/SNF complex component 5 (SNF5) are important for T3-dependent transcriptional activation. The CARM1- SWI/SNF chromatin remodeling complex serves as a mechanism for the rapid reversal of H3-K9 methylation. Importantly, siRNA treatment against CARM1 and/or SNF5 increased the recruitment of HMTase G9a to the type 1 deiodinase (D1) promoter even with T3. Knocking- down either CARM1 or SNF5 also inhibited the down- regulation of histone macroH2A, which is correlated with transcriptional activation. Finally, knocking down CARM1 and SNF5 by siRNA impaired the association of these coactivators to the D1 promoter, suggesting functional importance of CARM1- SNF5 complex in T3-dependent transcriptional activation.
Chromosomal Proteins, Non-Histone/*physiology
;
DNA-Binding Proteins/*physiology
;
Hela Cells
;
Histone-Lysine N-Methyltransferase/*metabolism
;
Histones/metabolism
;
Humans
;
Iodide Peroxidase/metabolism
;
Methylation
;
Promoter Regions, Genetic
;
Protein Methyltransferases
;
Protein-Arginine N-Methyltransferase/*physiology
;
Receptors, Thyroid Hormone/*physiology
;
Transcription Factors/*physiology
;
*Transcriptional Activation