1.Effect of 5-hydroxtryptamine on megakaryocytopoiesis--review.
Yuan-Shan CHENG ; Yuan-Sheng LIU ; Mo YANG
Journal of Experimental Hematology 2006;14(2):403-407
5-hydroxtryptamine (5-HT, serotonin) has been recognized not only as a neurotransmitter and vasoactive agent, but also as a growth factor. 5-HT mainly binds to 5-HT(2) receptors or 5-HT(1) receptors on cell surface to stimulate cell proliferation through Ras or MAPK pathway in many cell types. It has been reported that 5-HT stimulates megakaryocytopoiesis via 5-HT receptors. The possible mechanism of 5-HT on the proliferation and differentiation of megakaryocytes (MK) has been discussed in this review article. In early stage of megakaryocytopoiesis, 5-HT may bind to 5-HT(2B) receptor on megakaryocytes, and promotes their proliferation and differentiation. In the late stage, 5-HT may involve in the platelet release procedure by inducing nitric oxide (NO) synthesis via 5-HT(2A) receptors. 5-HT can also antagonize the apoptotic effect induced by thrombospondin-1 (TSP-1) which is a platelet alpha granule protein and has synergic effect with platelet-derived growth factor (PDGF) to enhance megakaryocytes proliferation. Therefore, 5-HT is likely to be an important substance in the feedback regulation of thrombopoiesis. In this review the 5-HT and its receptors, 5-HT as cell growth factor, pathway of 5-HT stimulating cell proliferation and influance of 5-HT on MK-progenitor cells were summarized.
Humans
;
Megakaryocytes
;
physiology
;
Receptors, Serotonin
;
metabolism
;
Receptors, Serotonin, 5-HT2
;
metabolism
;
Serotonin
;
metabolism
;
pharmacology
;
Thrombopoiesis
;
physiology
;
Thrombopoietin
;
physiology
2.Serotonin reuptake inhibitors and bone health: A review of clinical studies and plausible mechanisms.
Ravisha WADHWA ; Manoj KUMAR ; Sushama TALEGAONKAR ; Divya VOHORA
Osteoporosis and Sarcopenia 2017;3(2):75-81
Selective serotonin reuptake inhibitors (SSRIs) are currently the treatment of choice in depression and constitute major portion of prescription in depressive patients. The role of serotonin receptors in bone is emerging, raising certain questions regarding the effect of blockade of serotonin reuptake in the bone metabolism. Clinical studies have reported an association of SSRI antidepressants which with increase in fracture and decrease in bone mineral density. This review focus on recent evidence that evaluate the association of SSRIs with the risk of fracture and bone mineral density and also the probable mechanisms that might be involved in such effects.
Antidepressive Agents
;
Bone Density
;
Depression
;
Humans
;
Metabolism
;
Prescriptions
;
Receptors, Serotonin
;
Serotonin Uptake Inhibitors*
;
Serotonin*
3.Cortical 5-hydroxytryptamine receptor 3A (Htr3a) positive inhibitory neurons: diversity in type and function.
Jin-Yun WU ; Hong-Zhi LIU ; Yan-Qing QI ; Xiao-Yang WU ; Yang CHEN ; Jiang-Teng LYU ; Ling GONG ; Miao HE
Acta Physiologica Sinica 2021;73(2):295-305
Cortical GABAergic inhibitory neurons are composed of three major classes, each expressing parvalbumin (PV), somatostatin (SOM) and 5-hydroxytryptamine receptor 3A (Htr3a), respectively. Htr3a
Animals
;
Interneurons/metabolism*
;
Mice
;
Neurons/metabolism*
;
Parvalbumins/metabolism*
;
Receptors, Serotonin, 5-HT3/genetics*
;
Serotonin
;
Somatostatin/metabolism*
4.Interaction of 5-HT2 and 5-HT3 receptor subtype in 5-HT-induced nociceptive responses in peripheral primary sensory nerve ending.
Jian ZHANG ; Wang-Ping HU ; Ke-Chun ZHOU ; Jia-Lie LUO ; You-Zhen FAN ; Li-Qiang RU ; Zhi-Wang LI
Chinese Journal of Applied Physiology 2006;22(1):40-44
AIMTo study the correlation between 5-HT-induced pain response and the contribution by individual 5-HTR subtypes including 5-HT1R, 5-HT2R and 5-HT3R at the level of peripheral primary afferent.
METHODSThe experiments were done on acutely isolated trigeminal ganglion (TG) neurons using whole-cell patch clamp technique and the nociceptive effect was observed on behavior experiments by intraplantar injection of test drugs.
RESULTSThe majority of cells examined responded to 5-HT in a manner of concentration dependence (10(-6) - 10(-3) mol/) (61.4%, 54/88) and with a fast activating and rapid desensitizing inward current (I(5-HT)), which was thought to be mediated by the activation of 5-HT3R, since it could be blocked by 5-HT3R antagonist ICS 205930 and mimicked by 5-HT3R agonist 2-methyl-5-HT. It was found that I(5-HT) was potentiated by 5-HT2R agonist alpha-methyl-5-HT markedly, while 5-HT1R agonist R-(+)-UH 301 did not. In behavioral experiment performed on conscious rats, intraplantar injection of 5-HT(10(-5), 10(-4) and 10(-3) mol/L) induced an increment of cumulative lifting time first 20 min in a manner of concentration dependence. By dissociating 5-HTR subtypes using their corresponding antagonists (ICS and CYP) the potency order of hindpaw lifting time was identified as follows: 5-HT > 5-HT + ICS > 5-HT + CYP.
CONCLUSIONThe results suggest that in 5-HT-induced nociceptive response at the primary sensory level 5-HT3R may play a role of initiation, but 5-HT2R mediates maintaining and modulatory effect in the processes of nociceptive information convey.
Animals ; Male ; Membrane Potentials ; Pain ; physiopathology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Serotonin, 5-HT1 ; metabolism ; Receptors, Serotonin, 5-HT2 ; metabolism ; Receptors, Serotonin, 5-HT3 ; metabolism ; Sensory Receptor Cells ; metabolism ; physiology
5.Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon.
Nor S YAAKOB ; Kenneth A CHINKWO ; Navinisha CHETTY ; Ian M COUPAR ; Helen R IRVING
Journal of Neurogastroenterology and Motility 2015;21(3):361-369
BACKGROUND/AIMS: Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT3 and 5-HT4 receptors are clinically relevant. The aim was to examine the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine. METHODS: Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction. RESULTS: The 5-HT3 receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT3 receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT4 and 5-HT7 receptors were expressed throughout the colon although the 5-HT4 receptor d, g, and i variants were expressed less often. CONCLUSIONS: The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT3 receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance.
Colon*
;
Colon, Sigmoid
;
DNA, Complementary
;
G-Protein-Coupled Receptor Kinases
;
Gastrointestinal Tract
;
Humans
;
Ileum
;
Intestines
;
Metabolism
;
Mucous Membrane
;
Polymerase Chain Reaction
;
Receptors, Serotonin
;
Receptors, Serotonin, 5-HT3
;
Receptors, Serotonin, 5-HT4
;
Reverse Transcription
;
RNA
;
Serotonin
6.Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome.
Bai-cang ZOU ; Lei DONG ; Yan WANG ; Sheng-hao WANG ; Ming-bo CAO
Chinese Medical Journal 2007;120(23):2069-2074
BACKGROUNDThe 5-hydroxytryptamine7 receptor (5-HT(7) receptor, 5-HT(7)R) plays an important role in the regulation of smooth muscle relaxation and visceral sensation and might be involved in the pathogenesis of the gastrointestinal dyskinesia, abdominal pain and visceral paresthesia in irritable bowel syndrome (IBS). The aim of this study was to investigate the role of the 5-HT(7) receptor in the pathogenesis of IBS.
METHODSA rat model of irritable bowel syndrome with diarrhea (IBS-D) was established by colonic instillation of acetic acid and restraint stress. A rat model with irritable bowel syndrome with constipation (IBS-C) was established by stomach irrigated with 0 - 4 degrees C cool water daily for 14 days. The content and distribution of 5-HT in the brain and gut were examined by immunohistochemistry and the mRNA expression of the 5-HT(7) receptor was determined by fluorescent quantitative reverse transcription polymerase chain reaction. The accumulation of cyclic adenosine monophosphate (cAMP) in all the same tissues was measured by radioimmunity.
RESULTSThe models of IBS were reliable by identification. The immunohistochemistry results showed that there were significantly more 5-HT positive cells in the IBS-D group than in the control group in the hippocampus, hypothalamus, jejunum, ileum, proximate colon and distal colon (P < 0.05), as well as more than were found in the IBS-C group in jejunum and ileum (P < 0.05). There were more 5-HT positive cells in the IBS-C group than in the control hippocampus, hypothalamus, ileum, proximate colon, and distal colon (P < 0.05). Real time-PCR results showed that the expression level of the 5-HT(7) receptor in both the IBS-C and IBS-D groups were enhanced compared with the control group in the hippocampus and hypothalamus (P < 0.05). The expression level of 5-HT(7) receptors in the IBS-C group was notably greater when compared with the controls in the ileum and colon (P < 0.05). The cAMP accumulation in the hippocampus and hypothalamus in both the IBS-C and IBS-D groups was higher than that in the control group (P < 0.01 and P < 0.05). The cAMP accumulation in the IBS-C group was higher than that in the control group in the proximal and distal colon (P < 0.05).
CONCLUSIONSThe increased 5-HT content in the brain and intestine is related to the IBS pathogenesis. The up-regulated expression of the 5-HT(7) receptor in the brain and colon might play an important role in the pathogenesis of IBS-C.
Animals ; Brain ; metabolism ; Cyclic AMP ; metabolism ; Disease Models, Animal ; Immunohistochemistry ; Intestines ; metabolism ; Irritable Bowel Syndrome ; etiology ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Serotonin ; analysis ; genetics ; physiology ; Serotonin ; analysis
7.TREK1 potassium channels and depression.
Dong-Qing YE ; Zhi-Jun ZHANG ; Yang LI
Acta Pharmaceutica Sinica 2012;47(11):1403-1408
Major depression disorder is an increasing heavy burden in modem society, but its pathological mechanism is still vague. Recent evidence indicated that two pore potassium channel, TREK1, is one of the important drug targets of antidepressants. The structural and functional research progress of TREK1 potassium channel were reviewed with an emphasis on its roles in anti-depression, neuronal protection, and neuronal plasticity. The complicated interactions between TREK1 potassium channel and monoamine transmitters-receptors were also reviewed and future directions to explore the underline mechanism were also discussed.
Animals
;
Antidepressive Agents
;
pharmacology
;
Depressive Disorder, Major
;
genetics
;
metabolism
;
physiopathology
;
Drug Delivery Systems
;
Gene Knockout Techniques
;
Humans
;
Neuronal Plasticity
;
Polymorphism, Genetic
;
Potassium Channels, Tandem Pore Domain
;
genetics
;
metabolism
;
physiology
;
Receptors, Serotonin
;
metabolism
;
Receptors, Serotonin, 5-HT4
;
Serotonin
;
pharmacology
8.Effect of 5-HT7 receptor agonist on pyramidal neurons in the medial frontal cortex in a rat model of Parkinson's disease.
Ling-Ling FAN ; Bo DENG ; Jun-Bao YAN ; Zhi-Hong HU ; Ai-Hong REN ; Yong-Mei HU ; Dong-Wei YANG
Journal of Southern Medical University 2016;36(6):756-762
OBJECTIVETo investigate the activity of pyramidal neurons in the medial prefrontal cortex (mPFC) of normal and 6-OHDA-lesioned rats and the responses of the neurons to 5-hydroxytryptamine-7 (5-HT(7)) receptor stimulation.
METHODSThe changes in spontaneous firing of the pyramidal neurons in the mPFC in response to 5-HT(7) receptor stimulation were observed by extracellular recording in normal and 6-OHDA-lesioned rats.
RESULTSBoth systemic and local administration of 5-HT(7) receptor agonist AS 19 resulted in 3 response patterns (excitation, inhibition and no change) of the pyramidal neurons in the mPFC of normal and 6-OHDA-lesioned rats. In normal rats, the predominant response of the pyramidal neurons to AS 19 stimulation was excitatory, and the inhibitory effect of systemically administered AS 19 was reversed by GABAA receptor antagonist picrotoxinin. In the lesioned rats, systemic administration of AS 19 also increased the mean firing rate of the pyramidal neurons, but the cumulative dose for producing excitation was higher than that in normal rats. Systemic administration of AS 19 produced an inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. Local administration of AS 19 at the same dose did not change the ?ring rate of the neurons in the lesioned rats.
CONCLUSIONThe activity of mPFC pyramidal neurons is directly or indirectly regulated by 5-HT7 receptor, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19.
Action Potentials ; Animals ; Oxidopamine ; Parkinson Disease ; metabolism ; Prefrontal Cortex ; cytology ; Pyramidal Cells ; drug effects ; Rats ; Receptors, Serotonin ; metabolism ; Serotonin Receptor Agonists ; pharmacology
9.An inhibitory compound against the interaction between Galpha(s) and the third intracellular loop region of serotonin receptor subtype 6 (5-HT(6)) disrupts the signaling pathway of 5-HT(6).
Yun Hee CHOI ; Hatan KANG ; Won Kyu LEE ; Taehyun KIM ; Hyewhon RHIM ; Yeon Gyu YU
Experimental & Molecular Medicine 2007;39(3):335-342
Serotonin receptor subtype 6 (5-HT(6)) is a neurotransmitter receptor, which is involved in various brain functions such as memory and mood. It mediates signaling via the interaction with a stimulatory G-protein. Especially, the third intracellular loop (iL3) of 5-HT(6) and the alpha subunit of stimulatory G protein (Galpha(s)) are responsible for the signaling process of 5-HT(6). Chemical compounds that could inhibit the interaction between the iL3 region of 5-HT(6) and Galpha(s) were screened from a chemical library consisted of 5,600 synthetic compounds. One of the identified compounds bound to Galpha(s) and effectively blocked the interaction between Galpha(s) and the iL3 region of 5-HT(6). The identified compound was further shown to reduce the serotonin-induced accumulation of cAMP in 293T cells transformed with 5-HT(6) cDNA. It also lowered the Ca2+ efflux induced by serotonin in cells expressing 5-HT(6) and chimeric Galpha(s5/q). These results indicate that the interaction between the iL3 of 5-HT(6) and Galpha(s) can be exploited for screening of regulatory compounds against the signaling pathway of 5-HT(6).
Animals
;
Calcium/metabolism
;
Cell Line
;
Cephalosporins/*pharmacology
;
Cricetinae
;
Cricetulus
;
Cyclic AMP/biosynthesis
;
GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors/*metabolism
;
Humans
;
Receptors, Serotonin/*drug effects/metabolism/*physiology
;
Serotonin/pharmacology
;
Serotonin Antagonists/pharmacology
;
Signal Transduction
10.Analgesic Mechanism of Electroacupuncture in an Arthritic Pain Model of Rats: A Neurotransmitter Study.
Young Chul YOO ; Jin Hwan OH ; Tae Dong KWON ; Yeong Kyu LEE ; Sun Joon BAI
Yonsei Medical Journal 2011;52(6):1016-1021
PURPOSE: We investigated what kinds of neurotransmitters are related with electroacupuncture (EA) analgesia in an arthritic pain model of rats. MATERIALS AND METHODS: One hundred rats were assigned to six groups: control, EA, opioid, adrenergic, serotonin and dopamine group. A standardized model of inflammatory arthritis was produced by injecting 2% carrageenan into the knee joint cavity. EA was applied to an acupoint for 30 min in all groups except fo the control group. In the opioid, adrenergic, serotonin and dopamine groups, each receptor antagonist was injected intraperitoneally to their respective group before initiating EA. RESULTS: In the opioid receptor antagonist group, adrenergic receptor antagonist group, serotonin receptor antagonist group, dopamine receptor antagonist group and the control group weight-bearing force decreased significantly from 30 min to 180 min after EA in comparison with the EA group. CONCLUSION: The analgesic effects of EA are related to opioid, adrenergic, serotonin and dopamine receptors in an arthritic pain model of rats.
Acupuncture Analgesia/*methods
;
Adrenergic Antagonists/therapeutic use
;
Animals
;
Arthritis/chemically induced/drug therapy/physiopathology/*therapy
;
Carrageenan/toxicity
;
Dopamine Antagonists/therapeutic use
;
Electroacupuncture/*methods
;
Male
;
Neurotransmitter Agents/*metabolism
;
Pain/drug therapy/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic/metabolism
;
Receptors, Dopamine/metabolism
;
Receptors, Opioid/antagonists & inhibitors/metabolism
;
Receptors, Serotonin/metabolism
;
Serotonin Antagonists/therapeutic use