1.An inhibitory compound against the interaction between Galpha(s) and the third intracellular loop region of serotonin receptor subtype 6 (5-HT(6)) disrupts the signaling pathway of 5-HT(6).
Yun Hee CHOI ; Hatan KANG ; Won Kyu LEE ; Taehyun KIM ; Hyewhon RHIM ; Yeon Gyu YU
Experimental & Molecular Medicine 2007;39(3):335-342
Serotonin receptor subtype 6 (5-HT(6)) is a neurotransmitter receptor, which is involved in various brain functions such as memory and mood. It mediates signaling via the interaction with a stimulatory G-protein. Especially, the third intracellular loop (iL3) of 5-HT(6) and the alpha subunit of stimulatory G protein (Galpha(s)) are responsible for the signaling process of 5-HT(6). Chemical compounds that could inhibit the interaction between the iL3 region of 5-HT(6) and Galpha(s) were screened from a chemical library consisted of 5,600 synthetic compounds. One of the identified compounds bound to Galpha(s) and effectively blocked the interaction between Galpha(s) and the iL3 region of 5-HT(6). The identified compound was further shown to reduce the serotonin-induced accumulation of cAMP in 293T cells transformed with 5-HT(6) cDNA. It also lowered the Ca2+ efflux induced by serotonin in cells expressing 5-HT(6) and chimeric Galpha(s5/q). These results indicate that the interaction between the iL3 of 5-HT(6) and Galpha(s) can be exploited for screening of regulatory compounds against the signaling pathway of 5-HT(6).
Animals
;
Calcium/metabolism
;
Cell Line
;
Cephalosporins/*pharmacology
;
Cricetinae
;
Cricetulus
;
Cyclic AMP/biosynthesis
;
GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors/*metabolism
;
Humans
;
Receptors, Serotonin/*drug effects/metabolism/*physiology
;
Serotonin/pharmacology
;
Serotonin Antagonists/pharmacology
;
Signal Transduction
2.Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.
Vijeta BOBADE ; Subhash L BODHANKAR ; Urmila ASWAR ; Mohan VISHWARAMAN ; Prasad THAKURDESAI
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):274-282
The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.
Administration, Intranasal
;
Administration, Oral
;
Animals
;
Bradykinin
;
Female
;
Hyperalgesia
;
chemically induced
;
prevention & control
;
Male
;
Migraine Disorders
;
chemically induced
;
prevention & control
;
Models, Animal
;
Nitroglycerin
;
Nociception
;
drug effects
;
Plant Leaves
;
chemistry
;
Pre-Exposure Prophylaxis
;
Rats
;
Rats, Wistar
;
Reaction Time
;
Receptors, Serotonin, 5-HT1
;
drug effects
;
Serotonin 5-HT1 Receptor Antagonists
;
metabolism
;
Tail
;
physiology
;
Triterpenes
;
administration & dosage
;
pharmacology