1.Differential regulation of P2X3 protein expression in the rat trigeminal ganglion after experimental tooth movement.
Yang CAO ; Wen-li LAI ; Yang-xi CHEN
West China Journal of Stomatology 2006;24(5):389-392
OBJECTIVETo investigate the regulation of P2X3 protein expression in the trigeminal ganglion sensory neurons after the nociceptive stimulation by orthodontic tooth movement force.
METHODSMale Sprague-Dawley rats weighing 200-250 g were used. The mimic tooth movement appliance was used in experimental group rats. The animals were sacrificed after 4 h, 1 d, 2 d, 3 d, 5 d, 7 d and 14 d. The semi-quality of P2X3 protein was measured by Western blot. The expression place and strength of P2X3 was detected by in situ hybridization with an oligonucleotide probe in the same time.
RESULTSA major specific protein of 4.5 x 10(4) was found by Western blot in trigeminal ganglion of rats. The expression strength of P2X3 receptor increased after given force to the teeth of rats from 1 day of experiment, 3 day group rats showed peak change. 14 day group had returned to control values. The level change of P2X3 mRNA expression showed the same result.
CONCLUSIONThe results suggest that the P2X3 receptor expression is transiently upregulated and anterogradely transported in trigeminal primary sensory neurons after orthodontic tooth movement and that P2X3 receptor may play role in the pathomechanism of nociceptive in primary sensory neurons during orthodontic clinic treatment.
Animals ; In Situ Hybridization ; Male ; Rats ; Rats, Sprague-Dawley ; Receptors, Purinergic P2 ; Receptors, Purinergic P2X3 ; Tooth Movement Techniques ; Trigeminal Ganglion
2.Vascular Reactivity by Purinoceptor Activation in Rat Inferior Vena Cava.
Boo Soo LEE ; Hae Sook CHUNG ; Kyu Sang PARK ; In Deok KONG ; Seong Woo JEONG ; Joong Woo LEE
Korean Circulation Journal 2000;30(9):1156-1164
BACKGROUND: Extracellular ATP, released from platelets and nerve endings, plays significant roles in the regulation of circulation. The effects of ATP depend on the location of the vessels and the species of experimental animals. Until now, studies were limited to arteries, so we compared the effects of ATP in rat vena cava with those in the aorta and attempted to identify the characteristics of their receptors. METHODS: Vascular rings were isolated from the rat inferior vena cava and descending thoracic aorta. Endothelial cells were preserved or removed by gentle rubbing. The isometric contractions were recorded on polygraph using a force transducer. RESULTS: In the vena cava ring precontracted by 100 nM norepinephrine (NE), ATP elicited relaxations in a dose-dependent manner. These effects were abolished by removal of the endothelium or pretreatment with a nitric oxide synthase inhibitor. Relaxations to ATP in the vena cava (EC50 :9.9 microM) were less potent than those in the aorta (1.7 microM). The relative order of potencies was ADP>ATP>AMP>adenosine, but the maximal relaxation to ADP was smaller than to ATP. ATP-induced vasorelaxation was blocked by suramin, a nonselective antagonist for P2 purinoceptor and reactive blue-2, a P2Y blocker. At basal tension, ATP contracted the vena cava dose-dependently and these effects were potentiated by endothelium-removal. Contractions in the vena cava were also less potent than in the aorta, and the order of potencies was alpha, beta-MeATP>UTP>ATP>ADP>AMP=adenosine. ATP-induced vasoconstriction was blocked by suramin and alpha, beta-MeATP, a desensitizing antagonist of P2X purinoceptor, and potentiated by pretreatment with UTP. CONCLUSION: These results suggest that ADP and ATP acts on P2Y1- and P2Y2-purinoceptor in the endothelium, respectively and induces vasorelaxation of the vena cava, which is mediated by nitric oxide. Since ATP and UTP induced vasoconstriction in endothelium-denuded condition, it may be mediated by the activation of the P2X and P2Y4, 6 purinoceptor on smooth muscles, respectively.
Adenosine Diphosphate
;
Adenosine Triphosphate
;
Animals
;
Aorta
;
Aorta, Thoracic
;
Arteries
;
Endothelial Cells
;
Endothelium
;
Isometric Contraction
;
Muscle, Smooth
;
Nerve Endings
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Norepinephrine
;
Rats*
;
Receptors, Purinergic P2
;
Receptors, Purinergic P2X
;
Receptors, Purinergic*
;
Relaxation
;
Suramin
;
Transducers
;
Uridine Triphosphate
;
Vasoconstriction
;
Vasodilation
;
Vena Cava, Inferior*
3.Effect of isosorbide-5-mononitrate on sympathetic purinergic vasoconstriction of the rabbit saphenous artery.
Wen-Xiu SI ; Hai-Gang LU ; Lei-Ming REN
Acta Pharmaceutica Sinica 2007;42(8):833-837
The aim of this study is to investigate the effect of isosorbide-5-mononitrate (ISMN) on the electric field stimulation induced sympathetic purinergic vasoconstriction of the rabbit saphenous arterial rings. Isometric vasoconstrictive responses to electric field stimulation and to exogenous noradrenaline and adenosine triphosphate were recorded. We found that the vasoconstrictive responses to electric field stimulation (15 V, 1 ms pulse duration, 2 - 16 Hz) were frequency-dependant in the rabbit saphenous arterial rings, and abolished by tetrodotoxin (0.1 micromol x L(-1)). The alpha1-adrenoceptor antagonist prazosin (1 micromol x L(-1)) did not affect the vascular responses to the electric field stimulation (2 -8 Hz). After a combination treatment with both alpha,beta-meATP (3 micromol x L(-1), desensitizing P2X1 receptors) and prazosin (1 micromol x L(-1)), the vasoconstrictive responses to electric field stimulation were abolished. When the arterial preparation was treated with ISMN (one preparation was exposed to only one concentration of ISMN), ISMN at 0.1 mmol x L(-1) significantly inhibited the vasoconstriction induced by electric stimulation at 8 Hz, 0.3 and 1.0 mmol x L(-1) significantly inhibited the vasoconstrictive responses to electric stimulation at 2 - 16 Hz. The highest concentration of ISMN (1.0 mmol x L(-1)) reduced the vasoconstrictive responses by 46% (2 Hz), 47% (4 Hz), 34% (8 Hz) and 22% (16 Hz), separately. ISMN (0.3 and 1.0 mmol x L(-1)) did not affect the vascular responses to exogenous noradrenaline (0.01-100 micromol x L(-1)) and adenosine triphosphate (1 mmol x L(-1)). It is reasonable to suggest that ISMN inhibits the purinergic vasoconstriction induced by sympathetic nerve stimulation via a prejunctional mechanism.
Adenosine Triphosphate
;
analogs & derivatives
;
pharmacology
;
Adrenergic alpha-Antagonists
;
pharmacology
;
Animals
;
Arteries
;
drug effects
;
Delayed-Action Preparations
;
Electric Stimulation
;
Isosorbide Dinitrate
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
Male
;
Norepinephrine
;
pharmacology
;
Prazosin
;
pharmacology
;
Purinergic P2 Receptor Agonists
;
Rabbits
;
Receptors, Purinergic P2X
;
Vasoconstriction
;
drug effects
4.Cloning and functional analysis of P2X7 receptor from J6-1 leukemia cells.
Kun NIE ; Guo-Guang ZHENG ; Yong-Min LIN ; Xiu-Jun ZHANG ; Lin WANG ; Yu-Hua SONG ; Ke-Fu WU
Chinese Journal of Hematology 2006;27(9):602-605
OBJECTIVETo clone the entire coding sequence and analyze the function of P2X7 receptor of J6-1 human leukemia cells.
METHODSThe entire coding sequence of P2X7 receptor was amplified by RT-PCR and then inserted into pTARGET plasmid to construct an eukaryotic expressing plasmid followed by DNA sequencing. HEK293 cells stably expressing P2X7 receptor were obtained after transfection and screening, and confirmed by RT-PCR and Western blotting. The bleb formation upon agonist stimulation was observed under phase contrast microscope.
RESULTSThe entire coding sequence of P2X7 receptor of J6-1 cells was successfully cloned. DNA sequencing analysis revealed a substitution of G559, for A559, causing a substitution of Glu187 for Gln187. The P2X7 receptor derived from J6-1 cells could be functionally expressed in HEK293 cells, in which bleb formation could be detected upon stimulation.
CONCLUSIONSThe entire coding sequence of P2X7 receptors was successfully cloned from J6-1 leukemia cells. Other unknown mechanism may contribute to the dysfunction of P2X7 receptor in these cells.
Cell Line, Tumor ; Cloning, Molecular ; DNA, Complementary ; genetics ; Gene Expression ; Humans ; Leukemia ; genetics ; metabolism ; Receptors, Purinergic P2 ; genetics ; physiology ; Receptors, Purinergic P2X7 ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection
5.Antidepressant-like Effects Induced by Chronic Blockade of the Purinergic 2X7 Receptor through Inhibition of Non-like Receptor Protein 1 Inflammasome in Chronic Unpredictable Mild Stress Model of Depression in Rats
Feyza ARICIOGLU ; Ceren Sahin OZKARTAL ; Tugce BASTASKIN ; Erdem TÜZÜN ; Cansu KANDEMIR ; Serap SIRVANCI ; Cem Ismail KUCUKALI ; Tijen UTKAN
Clinical Psychopharmacology and Neuroscience 2019;17(2):261-272
OBJECTIVE: Purinergic 2X7 receptor (P2X7R) activation is known to be involved in pathogenesis of depression. Our aims were to investigate P2X7R-activated inflammasome pathways in parallel with induction of depression and to test the antidepressant-like effects of the selective P2X7R antagonist Brilliant Blue G (BBG) in a rat model of chronic unpredictable mild stress (CUMS). METHODS: Male Wistar albino rats were divided into control, CUMS, CUMS+BBG25 (25 mg/kg/day) and CUMS+BBG50 (50 mg/kg/day) groups (n=10 for each group). Various stressors were applied to rats for 6 weeks to establish the CUMS model and daily BBG treatment was started at the end of 3rd week. Sucrose preference test and forced swim test (FST) were performed to assess antidepressant-like effects. Brain samples were obtained for real-time polymerase chain reaction and immunohistochemistry analysis. RESULTS: In FST, duration of immobility was reduced in the CUMS+BBG50 group. Also, BBG treatment significantly enhanced sucrose preference. While NLRP3 gene expression levels were unchanged in rats exposed to the CUMS protocol, expression levels of other inflammasome pathway factors NLRP1, caspase-1, ASC, NF-κB, IL-1β, IL-6 and P2X7R were increased. BBG treatment reduced expression levels of these factors. Likewise, Iba-1 and GFAP immunoreactivities were enhanced by the CUMS protocol and this action was reversed by BBG treatment. CONCLUSION: Chronic administration of BBG in CUMS model results in antidepressant-like activity in a dose dependent manner. Molecular and histological results show that these effects might be at least partially related to the suppression of inflammasome-related neuroinflammatory responses and suggest involvement of NLRP1 in depression.
Animals
;
Brain
;
Depression
;
Gene Expression
;
Humans
;
Immunohistochemistry
;
Inflammasomes
;
Interleukin-6
;
Male
;
Models, Animal
;
Rats
;
Real-Time Polymerase Chain Reaction
;
Receptors, Purinergic P2
;
Receptors, Purinergic P2X7
;
Sucrose
6.Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways.
Jing-Jun SUN ; Ying LIU ; Zhu-Rong YE
Neuroscience Bulletin 2008;24(4):231-243
OBJECTIVEThe present study aimed to explore the role of P2Y(1) receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways.
METHODSUsing transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y(1) receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules.
RESULTSBlockage of P2Y(1) receptor with the selective antagonist N(6)-methyl-2'-deoxyadenosine 3',5'-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y(1) receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y(1) receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase1/2 (MEK1/2) U0126, an important molecule of Ras/extracellular signal-regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB.
CONCLUSIONThese results suggest that P2Y(1) receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.
Animals ; Astrocytes ; metabolism ; Blotting, Western ; Enzyme-Linked Immunosorbent Assay ; Fluorescent Antibody Technique ; Glial Cell Line-Derived Neurotrophic Factor ; biosynthesis ; Glial Fibrillary Acidic Protein ; biosynthesis ; Infarction, Middle Cerebral Artery ; metabolism ; RNA, Messenger ; analysis ; Rats ; Receptors, Purinergic P2 ; metabolism ; Receptors, Purinergic P2Y1 ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; physiology
7.Neuron-astrocyte communications mediated by gliotransmitters.
Chinese Journal of Contemporary Pediatrics 2010;12(4):313-315
Adenosine Triphosphate
;
physiology
;
Animals
;
Astrocytes
;
physiology
;
Calcium Signaling
;
Cell Communication
;
Glutamic Acid
;
physiology
;
Humans
;
Neurons
;
physiology
;
Receptors, G-Protein-Coupled
;
physiology
;
Receptors, Glutamate
;
physiology
;
Receptors, Purinergic P2
;
physiology
;
Receptors, Purinergic P2X7
8.P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress.
Yan DENG ; Xue-Ling GUO ; Xiao YUAN ; Jin SHANG ; Die ZHU ; Hui-Guo LIU
Chinese Medical Journal 2015;128(16):2168-2175
BACKGROUNDThe mechanism of the neural injury caused by chronic intermittent hypoxia (CIH) that characterizes obstructive sleep apnea syndrome (OSAS) is not clearly known. The purpose of this study was to investigate whether P2X7 receptor (P2X7R) is responsible for the CIH-induced neural injury and the possible pathway it involves.
METHODSEight-week-old male C57BL/6 mice were used. For each exposure time point, eight mice divided in room air (RA) and IH group were assigned to the study of P2X7R expression. Whereas in the 21 days-Brilliant Blue G (BBG, a selective P2X7R antagonist) study, 48 mice were randomly divided into CIH group, BBG-treated CIH group, RA group and BBG-treated RA group. The hippocampus P2X7R expression was determined by Western blotting and real-time polymerase chain reaction (PCR). The spatial learning was analyzed by Morris water maze. The nuclear factor kappa B (NFκB) and NADPH oxidase 2 (NOX2) expressions were analyzed by Western blotting. The expressions of tumor necrosis factor α, interleukin 1β (IL-β), IL-18, and IL-6 were measured by real-time PCR. The malondialdehyde and superoxide dismutase levels were detected by colorimetric method. Cell damage was evaluated by Hematoxylin and Eosin staining and Terminal Transferase dUTP Nick-end Labeling method.
RESULTSThe P2X7R mRNA was elevated and sustained after 3-day IH exposure and the P2X7R protein was elevated and sustained after 7-day IH exposure. In the BBG study, the CIH mice showed severer neuronal cell damage and poorer performance in the behavior test. The increased NFκB and NOX2 expressions along with the inflammation injury and oxidative stress were also observed in the CIH group. BBG alleviated CIH-induced neural injury and consequent functional deficits.
CONCLUSIONSThe P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.
Animals ; Disease Models, Animal ; Hypoxia ; Male ; Metabolic Networks and Pathways ; Mice ; Mice, Inbred C57BL ; Purinergic P2 Receptor Antagonists ; pharmacology ; Receptors, Purinergic P2X7 ; analysis ; physiology ; Rosaniline Dyes ; pharmacology ; Sleep Apnea, Obstructive ; metabolism
9.Membrane-Specific Expression of Functional Purinergic Receptors in Normal Human Nasal Epithelial Cells.
Chang Hoon KIM ; Sung Shik KIM ; Jong Bum YOO ; Sei Young LEE ; Mee Hyun SONG ; Jeung Gweon LEE ; Joo Heon YOON
Korean Journal of Otolaryngology - Head and Neck Surgery 2005;48(5):606-614
BACKGROUND AND OBJECTIVES: Extracellular purines and pyrimidines regulate various physiological responses via cell surface receptors known as purinoreceptors, and may exert autocrine or paracrine effects on ion transport, fluid transport, ciliary beat frequency and mucin secretion. This study aims to investigate the expression patterns of such purinoreceptors found in normal human nasal epithelial (NHNE) cells. MATERIALS AND METHOD: In RT-PCR, the mRNAs for several P2X (P2X3, P2X4, P2X7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12) receptors were identified in NHNE cells. Functional localizations of P2 receptors were investigated by measuring [Ca2+]i increases in a membrane-specific manner using a double-perfusion chamber. Absence of the responses of -Me ATP and 2MeS-ATP excluded functionally active P2X3, P2X4, and P2Y1 receptors as far as [Ca2+]i increase was concerned. RESULTS: Applications with ATP and UTP revealed that luminal membranes of NHNE cells express P2Y2 and P2Y6 receptors and basolateral membranes P2Y2 receptors. Expressions of P2Y2 and P2Y6 receptors in NHNE cells were further verified by the immunoblotting using specific antibodies. In addition, the results with BzATP indicated that the P2Y11 receptor may be present on the luminal side. CONCLUSION: The NHNE cells express functionally active P2Y2, P2Y6 and P2Y11 receptors in a membrane-specific pattern, which may play an important role in the control of mucin and fluid secretion in NHNE cells.
Adenosine Triphosphate
;
Antibodies
;
Calcium
;
Epithelial Cells*
;
Humans*
;
Immunoblotting
;
Ion Transport
;
Membranes
;
Mucins
;
Nasal Mucosa
;
Phenobarbital
;
Purines
;
Pyrimidines
;
Receptors, Cell Surface
;
Receptors, Purinergic P2Y1
;
Receptors, Purinergic P2Y2
;
Receptors, Purinergic*
;
RNA, Messenger
;
Uridine Triphosphate
10.Effects of ATP on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Small Intestine
Il Koo PARK ; Jin Ho KIM ; Chan Guk PARK ; Man Yoo KIM ; Shankar Prasad PARAJULI ; Chan Sik HONG ; Seok CHOI ; Jae Yeoul JUN
Chonnam Medical Journal 2018;54(1):63-71
Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5′-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca²⁺ ([Ca²⁺]ᵢ) imaging. External ATP dose-dependently depolarized the resting membrane and produced tonic inward pacemaker currents, and these effects were antagonized by suramin, a purinergic P2 receptor antagonist. ATP-induced effects on pacemaker currents were suppressed by an external Na⁺-free solution and inhibited by the nonselective cation channel blockers, flufenamic acid and niflumic acid. The removal of external Ca²⁺ or treatment with thapsigargin (inhibitor of Ca²⁺ uptake into endoplasmic reticulum) inhibited the ATP-induced effects on pacemaker currents. Spontaneous [Ca²⁺]ᵢ oscillations were enhanced by external ATP. These results suggest that external ATP modulates pacemaker activity by activating nonselective cation channels via external Ca²⁺ influx and [Ca²⁺]ᵢ release from the endoplasmic reticulum. Thus, it seems that activating the purinergic P2 receptor may modulate GI motility by acting on ICCs in the small intestine.
Adenosine
;
Adenosine Triphosphate
;
Animals
;
Endoplasmic Reticulum
;
Flufenamic Acid
;
Interstitial Cells of Cajal
;
Intestine, Small
;
Membranes
;
Mice
;
Muscle, Smooth
;
Niflumic Acid
;
Pacemaker, Artificial
;
Receptors, Purinergic
;
Receptors, Purinergic P2
;
Suramin
;
Thapsigargin