1.The role of glucagon-like peptide-1 and its receptor in the mechanism of metabolic surgery.
Zhi-hai ZHENG ; Xiao-kun WANG ; Heng-liang ZHU ; Xiao-feng ZHENG ; Fei-zhao JIANG
Chinese Journal of Gastrointestinal Surgery 2013;16(9):907-910
At present, surgery has become one of the treatments for type 2 diabetes, but it is still unclear about the therapeutic mechanism. Many experiments has proved that the anatomical and physiological structure has been altered leading to significant changes related to the secretion of gastrointestinal hormones and neuropeptides. These molecular are related to the metabolism of glucose, functions of islet cells and sensitivity of insulin. Intensive studies of glucagon-like peptide-1 (GLP-1) play an important role in the surgical treatment of diabetes and now it has gained increasing recognition. However, GLP-1 must be combined with GLP-1 receptor (GLP-1R) to execute its function. In this paper we reviewed the role of GLP-1 and its receptor in the mechanism of metabolic surgery.
Diabetes Mellitus, Type 2
;
surgery
;
Glucagon-Like Peptide 1
;
Glucagon-Like Peptide-1 Receptor
;
Humans
;
Receptors, Glucagon
2.Glucagon-like peptide 1: a novel therapeutic strategy for Alzheimer's disease.
Xiao-Hui WANG ; Wei YANG ; Jin-Shun QI
Acta Physiologica Sinica 2010;62(5):398-406
There is a close correlation between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) in the course of pathophysiological processes. The neuroprotective action of glucagon-like peptide 1 (GLP-1), a latest drug for clinical treatment of T2DM, is being more deeply investigated at present, and a novel therapeutic strategy for AD with GLP-1 has been proposed boldly. This review mainly discussed the correlation of pathogenesis between T2DM and AD, the synthesis and secretion of GLP-1, the distribution and physiological effects of GLP-1 receptor in the brain, and the progresses on the study of GLP-1 in the treatment of AD.
Alzheimer Disease
;
drug therapy
;
physiopathology
;
Amyloid beta-Peptides
;
drug effects
;
metabolism
;
Animals
;
Brain
;
metabolism
;
Diabetes Mellitus, Type 2
;
physiopathology
;
Glucagon-Like Peptide 1
;
pharmacology
;
therapeutic use
;
Glucagon-Like Peptide-1 Receptor
;
Humans
;
Neuroprotective Agents
;
pharmacology
;
therapeutic use
;
Receptors, Glucagon
;
metabolism
3.Drugs developed for treatment of diabetes show protective effects in Alzheimer's and Parkinson's diseases.
Acta Physiologica Sinica 2014;66(5):497-510
Type 2 diabetes has been identified as a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). In the brains of patients with AD and PD, insulin signaling is impaired. This finding has motivated new research that showed good effects using drugs that initially had been developed to treat diabetes. Preclinical studies showed good neuroprotective effects applying insulin or long lasting analogues of incretin peptides. In transgenic animal models of AD or PD, analogues of the incretin GLP-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality and reduced the symptoms of the diseases. Amyloid plaque load and synaptic loss as well as cognitive impairment had been prevented in transgenic AD mouse models, and dopaminergic loss of transmission and motor function has been reversed in animal models of PD. On the basis of these promising findings, several clinical trials are being conducted with the first encouraging clinical results already published. In several pilot studies in AD patients, the nasal application of insulin showed encouraging effects on cognition and biomarkers. A pilot study in PD patients testing a GLP-1 receptor agonist that is currently on the market as a treatment for type 2 diabetes (exendin-4, Byetta) also showed encouraging effects. Several other clinical trials are currently ongoing in AD patients, testing another GLP-1 analogue that is on the market (liraglutide, Victoza). Recently, a third GLP-1 receptor agonist has been brought to the market in Europe (Lixisenatide, Lyxumia), which also shows very promising neuroprotective effects. This review will summarise the range of these protective effects that those drugs have demonstrated. GLP-1 analogues show promise in providing novel treatments that may be protective or even regenerative in AD and PD, something that no current drug does.
Alzheimer Disease
;
drug therapy
;
Animals
;
Diabetes Mellitus, Type 2
;
drug therapy
;
Disease Models, Animal
;
Glucagon-Like Peptide 1
;
analogs & derivatives
;
pharmacology
;
Glucagon-Like Peptide-1 Receptor
;
Humans
;
Liraglutide
;
Mice
;
Mice, Transgenic
;
Neuroprotective Agents
;
pharmacology
;
Parkinson Disease
;
drug therapy
;
Peptides
;
pharmacology
;
Receptors, Glucagon
;
agonists
;
Venoms
;
pharmacology
4.Biological activity studies of the novel glucagon-like peptide-1 derivative HJ07.
Jing HAN ; Li-Dan SUN ; Hai QIAN ; Wen-Long HUANG
Chinese Journal of Natural Medicines (English Ed.) 2014;12(8):613-618
AIM:
To identify the glucose lowering ability and chronic treatment effects of a novel coumarin-glucagon-like peptide-1 (GLP-1) conjugate HJ07.
METHOD:
A receptor activation experiment was performed in HEK 293 cells and the glucose lowering ability was evaluated with hypoglycemic duration and glucose stabilizing tests. Chronic treatment was performed by daily injection of exendin-4, saline, and HJ07. Body weight and HbA1c were measured every week, and an intraperitoneal glucose tolerance test was performed before treatment and after treatment.
RESULTS:
HJ07 showed well-preserved receptor activation efficacy. The hypoglycemic duration test showed that HJ07 possessed a long-acting, glucose-lowering effect and the glucose stabilizing test showed that the antihyperglycemic activity of HJ07 was still evident at a predetermined time (12 h) prior to the glucose challenge (0 h). The long time glucose-lowering effect of HJ07 was better than native GLP-1 and exendin-4. Furthermore, once daily injection of HJ07 to db/db mice achieved long-term beneficial effects on HbA1c lowering and glucose tolerance.
CONCLUSION
The biological activity results of HJ07 suggest that HJ07 is a potential long-acting agent for the treatment of type 2 diabetes.
Animals
;
Blood Glucose
;
metabolism
;
Coumarins
;
pharmacology
;
Diabetes Mellitus
;
blood
;
drug therapy
;
Diabetes Mellitus, Type 2
;
drug therapy
;
Exenatide
;
Glucagon-Like Peptide 1
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Glucagon-Like Peptide-1 Receptor
;
Glucose Tolerance Test
;
Glycated Hemoglobin A
;
metabolism
;
HEK293 Cells
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Male
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Peptides
;
pharmacology
;
Receptors, Glucagon
;
metabolism
;
Venoms
;
pharmacology
5.New Therapeutics for Diabetes Using Incretin Hormone.
Korean Journal of Medicine 2011;80(6):625-634
New therapeutics for type 2 diabetes using incretin hormone were introduced recently. Incretin-based therapies consist of two types: GLP-1 agonists mainly acting on the GLP-1 receptor and dipeptidyl peptidase 4 inhibitors (DPP-4 inhibitors). The former is resistant to DPP-4 and injectable. The latter is oral medications raising endogenous GLP-1 by inhibiting the degrading enzyme DPP-4. The incretin based therapies are promising and more commonly used due to their action and safety profile. Stimulation of insulin secretion by these drugs occurs in a glucose-dependent manner. Incretin based therapies have low risk for hypoglycemia. The subsequent review outlines evidence from selected clinical trials of the currently available GLP-1 agonists, exenatide and liraglutide, and DPP-4 inhibitors, sitagliptin and vildagliptin.
Adamantane
;
Dipeptidyl-Peptidase IV Inhibitors
;
Glucagon-Like Peptide 1
;
Hypoglycemia
;
Incretins
;
Insulin
;
Nitriles
;
Peptides
;
Pyrazines
;
Pyrrolidines
;
Receptors, Glucagon
;
Triazoles
;
Venoms
;
Glucagon-Like Peptide-1 Receptor
;
Liraglutide
;
Sitagliptin Phosphate
6.Geniposide inhibits CoCl2-induced PC12 cells death via the mitochondrial pathway.
Li-xia GUO ; Jian-hui LIU ; Zhi-ning XIA
Chinese Medical Journal 2009;122(23):2886-2892
<b>BACKGROUNDb>A number of studies have shown that oxidative stress and mitochondrial involvement are major triggering factors in the development of neurodegenerative diseases. Cobalt chloride (CoCl(2))-induced cell death in PC12 cells may serve a simple and convenient in vitro model of hypoxia-induced neuronal cytotoxicity. To explore the effect of geniposide on CoCl(2) which induced cytotoxicity and mitochondrial function in rat pheochromocytoma PC12 cells, we analyzed the influence of geniposide on the expression of apoptosis-related proteins.
<b>METHODSb>PC12 cells and RNAi PC12 cells were treated with 0, 12.5, 25, 50, 100 micromol/L geniposide for 12 hours and then exposure to 400 micromol/L CoCl(2) for 12 hours. Cell viability, cell morphology, and expression of Bcl-2, Bax, P53 and caspase-9 were determined using Western blotting.
<b>RESULTSb>Pretreatment with geniposide markedly improved the cells viability and morphology, decreased the expression of Bax, P53 and caspase-9, and increased the expression of Bcl-2 in PC12 cells challenged by CoCl(2)2. However, in the RNAi PC12 cells, geniposide had no significant effect on the expression of these proteins.
<b>CONCLUSIONb>Geniposide protects PC12 cells from CoCl(2) involved in mitochondrial mediated apoptosis, and GLP-1R might play a critical role in the neuroprotection of geniposide in PC12 cells.
Animals ; Apoptosis ; drug effects ; Cobalt ; toxicity ; Glucagon-Like Peptide-1 Receptor ; Iridoids ; pharmacology ; Mitochondria ; physiology ; Neuroprotective Agents ; pharmacology ; PC12 Cells ; Proto-Oncogene Proteins c-bcl-2 ; physiology ; Rats ; Receptors, Glucagon ; drug effects ; physiology ; Signal Transduction ; bcl-2-Associated X Protein ; physiology
7.The Effects of Exendin-4 on IRS-2 Expression and Phosphorylation in INS-1 Cells.
Ji Hyun KIM ; Ji Won KIM ; Sung Yoon JEON ; Heon Seok PARK ; Dong Sik HAM ; Young Hye YOU ; Seung Hwan LEE ; Jae Hyoung CHO ; Mi Ja KANG ; Kang Woo LEE ; Hyuk Sang KWON ; Kun Ho YOON ; Bong Yun CHA ; Kwang Woo LEE ; Sung Koo KANG ; Ho Young SON
Korean Diabetes Journal 2008;32(2):102-111
BACKGROUND: Insulin receptor substrate 2 (IRS-2) is a key regulator of beta cell proliferation and apoptosis. This study was aimed to investigate effect of the glucolipotoxicity on apoptosis in INS-1 cell, and the effect of Exendin-4, a GLP-1 receptor agonist, on IRS-2 expression in the glucolipotoxicity induced INS-1 cell. The goal was to discover the new action mechanism and function of Exendin-4 in beta cell apoptosis. METHOD: INS-1 cells were cultured in glucolipotoxic condition for 2, 4 or 6 days and were categorized as G groups. Another group in which 50 nM Exendin-4 was added to INS-1 cells, cultured in glucolipotoxic condition, were named as Ex-4 groups. We investigated the expression of IRS-2 by RT-PCR, phosphorylated IRS-2 and phosphorylated Akt protein levels by western blot. We measured the apoptosis ratio of INS-1 cell in glucolipotoxic condition by TUNEL staining in both groups. RESULT: IRS-2 expression of INS-1 cells decreased with correlation to the time of exposure to glucolipotoxic condition. pIRS-2 and pAkt protein levels decreased in the similar pattern in glucolipotoxicity group. However, this effect of glucolipotoxicity on INS-1 cell was inhibited by the Exendin-4 treatment. In the Ex-4 groups, IRS-2 expression, pIRS-2 and pAkt protein levels remained at the similar level to low glucose condition state. Also, apoptosis induced by glucolipotoxicity was suppressed by Exendin-4 treatment significantly. CONCLUSION: We showed that the long-term treatment of Exendin-4 inhibited the apoptosis of beta cells significantly in glucolipotoxic condition and that this effect of Exendin-4 was related with IRS-2 and Akt among the beta cell's intracellular signal transduction pathway.
Apoptosis
;
Blotting, Western
;
Cell Proliferation
;
Cells, Cultured
;
Glucagon-Like Peptide 1
;
Glucagon-Like Peptide-1 Receptor
;
Glucose
;
In Situ Nick-End Labeling
;
Insulin Receptor Substrate Proteins
;
Peptides
;
Phosphorylation
;
Receptors, Glucagon
;
Signal Transduction
;
Venoms
8.GLP-1 receptor activation effects the p38MAPK signal pathway in hepatic stellate cells.
Lingkang WU ; Youming LI ; Yingchao LIU ; Cuilan TANG ; Feng WU ; Liangliang SHI ; Keda LU
Chinese Journal of Hepatology 2015;23(2):130-133
<b>OBJECTIVEb>To investigate the effects of activation of the GLP-1 receptor on the p38MAPK signaling pathway in hepatic stellate cells (HSCs).
<b>METHODSb>HSCs were isolated and identified according to morphological features; the levels of GLP-1R protein were determined by western blotting.The HSCs were randomly divided into a control grouP (normal saline treatment) and experimental grouP(liraglutide treatment); after 120 hours, the expression of p38MAPK mRNA was examined by RT-PCR and of phosphorylated (p)-p38MAPK protein was detected by western blotting.
<b>RESULTSb>GLP-1R proteins were detected in the HSCs. Compared with the control group, the experimental group showed significantly decreased p38MAPK mRNA and p-p38MAPK protein (both P < 0.01).
<b>CONCLUSIONb>The p38MAPK signaling pathway could be down-regulated when GLP-1R is activated in HSCs.
Cells, Cultured ; Glucagon-Like Peptide 1 ; analogs & derivatives ; pharmacology ; Glucagon-Like Peptide-1 Receptor ; Hepatic Stellate Cells ; metabolism ; Humans ; Liraglutide ; MAP Kinase Signaling System ; RNA, Messenger ; Receptors, Glucagon ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
9.Conserved W52 led to reduced binding of glucogan-like peptide 1 receptor.
Chinese Journal of Biotechnology 2013;29(1):87-94
Through phage display, we tried to find out whether the N-terminal fragment of glucogan-like peptide 1 receptor (nGLP-1R) still had binding activity to Exendin-4 after missing one or two gene segments. By error-prone PCR, We constructed a randomly mutated phage display peptide library with different length of the N-terminal (21-145 residues) extracellular domain of glucogan-like peptide 1 receptor (GLP-1R) from rat lung. A mutant named EP16 without binding activity was found by ELISA. Through sequence alignment we found that EP16 missed the first 20 and last 10 amino acids and the 52nd tryptophan was mutated to arginine. In order to determine why Ep16 did not show its binding ability to Exendin-4, a wild type EP16 without the first 20 and last 10 amino acids and nGLP-1R(W52R) was constructed in which the 52nd tryptophan was mutated to arginine. The contrastive analysis showed that the substitution of W52R led to a markedly reduced binding ability of EP16. The mutation of the conserved W52 could change the biologic activity of the protein. The lack of the first 20 and last 10 amino acids had no effect on its biologic activity. Therefore, the mutation of a single amino acid residue of the key sequence could change the biologic activity of the nGLP-1R.
Amino Acid Sequence
;
Amino Acid Substitution
;
Animals
;
Binding Sites
;
Glucagon-Like Peptide-1 Receptor
;
Molecular Sequence Data
;
Mutagenesis, Site-Directed
;
Mutation
;
Peptide Fragments
;
chemistry
;
genetics
;
metabolism
;
Peptides
;
metabolism
;
Protein Binding
;
Rats
;
Receptors, Glucagon
;
chemistry
;
genetics
;
metabolism
;
Venoms
;
metabolism
10.Beta Cells Preservation in Diabetes using GLP-1 and Its Analog.
Hanyang Medical Reviews 2009;29(2):140-147
Diabetes Mellitus is a metabolic disease caused by impaired insulin secretion of pancreatic beta cells and increased insulin resistance of peripheral tissues. In Asian T2DM, progressive loss of beta cells mass and concomitant reduction of insulin secretion are more fundamental problems than peripheral insulin resistance. To solve this problem, research fields about investigation how stimulated islet cell growth and block the islet cell death is getting more important. Recently introduced drug, Glucagon like peptide-1 (GLP-1) has many beneficial roles in treatment of diabetes. GLP-1 stimulated glucose dependent insulin secretion and also can preserve beta cell mass through stimulation of beta cell growth and differentiation and protection of beta cell death from hyperglycemic stress. After treatment of GLP-1 or Exendin-4 (GLP-1 receptor agonist), beta cell mass is increased in animal models. This can be achieved through beta cell proliferation in islet or differentiation from intrapancreatic progenitor cells like ductal epithelium. The mechanism of beta cell proliferation is mediated by the PKA-CREB pathway. After activation of GLP-1 receptor, intracellular cAMP is elevated and then it activates PKA and CREB phosphorylation. Translocation of CREB into the nucleus up-regulates PDX-1 andIRS-2. Another pathway for beta cell proliferation is trans-activation of EGFR via c-Src after GLP-1 receptor activated. The notch pathway, major determinant of pancreas development in the embryonic stage, can be participate beta mass preservation through activation of gamma secretase in the beta cell membrane. Cleaved intracellular part of the notch translocates to the nucleus and binds to the pdx-1 promoter region. In hyperglycemia, oxidative and endoplasmic reticulum (ER) stress can be caused by apoptosis of the beta cell. Protection of apoptosis is another tool for beta cell mass preservation. After treatment of GLP-1 or exendin-4, beta cell apoptosis induced by oxidative and ER stress can be protected. GLP-1 can modulate JNK and GSK 3beta activation and ER chaperone and ER stress response. In treatment of diabetes, GLP-1 increases insulin secretion with glucose dependent manner and also preserves beta cell mass against progressive beta cell loss
Amyloid Precursor Protein Secretases
;
Apoptosis
;
Asian Continental Ancestry Group
;
Cell Death
;
Cell Membrane
;
Cell Proliferation
;
Diabetes Mellitus
;
Endoplasmic Reticulum
;
Epithelium
;
Glucagon
;
Glucagon-Like Peptide 1
;
Glucose
;
Humans
;
Hyperglycemia
;
Insulin
;
Insulin Resistance
;
Insulin-Secreting Cells
;
Islets of Langerhans
;
Metabolic Diseases
;
Models, Animal
;
Pancreas
;
Peptides
;
Phosphorylation
;
Promoter Regions, Genetic
;
Receptors, Glucagon
;
Stem Cells
;
Venoms
;
Glucagon-Like Peptide-1 Receptor