1.Effect and mechanism of alkaloids from Portulacae Herba on ulcerative colitis in mice based on TLR4/MyD88/NF-κB signaling pathway.
Jia-Hui ZHENG ; Ying-Ying SONG ; Tian-Ci ZHANG ; Wen-Ting WANG ; Zhi-Ping YANG ; Jin-Xia AI
China Journal of Chinese Materia Medica 2025;50(4):874-881
This study investigated the functions and regulatory mechanism of Portulacae Herba and its chemical components on the Toll-like receptor 4(TLR4)/myeloid differentiation primary response 88(MyD88)/nuclear factor kappa B(NF-κB) inflammatory signaling pathway in the colon tissue of mice with dextran sodium sulfate(DSS)-induced ulcerative colitis(UC). A total of 35 mice were randomly divided into groups, including a blank group, a model group, a mesalazine group(0. 5 g·kg~(-1)), and low, medium,and high dose alkaloids from Portulacae Herba groups(9, 18, 36 mg·kg~(-1)), and a combination treatment group, with 5 mice in each group. The blank group was given purified water, while the other groups were continuously given a 3% DSS solution for 7 days to induce the UC model. From day 8 onwards, the treatment group received oral gavage according to the prescribed doses for 14 days. The overall condition, body weight, stool characteristics, and presence of blood in the stool were recorded daily. After the experiment, the disease activity index(DAI) was assessed for each group, and colon length was measured. Histopathological changes in colon tissue were examined using hematoxylin-eosin(HE) staining. The levels of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α),and interleukin-1β( IL-1β) in serum were measured by enzyme-linked immunosorbent assay( ELISA). The protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were measured using Western blot and quantitative real-time PCR(qPCR).Compared to the blank group, the model group showed a significant decrease in body weight, a notable increase in DAI scores, a significant shortening of colon length, and evident histopathological damage. The levels of inflammatory cytokines TNF-α and IL-1β in the serum were significantly elevated, and the protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were significantly up-regulated. In contrast, the alkaloids from Portulacae Herba treatment groups significantly improved symptoms and reduced body weight loss in mice, decreased DAI scores, alleviated colon shortening, lowered serum levels of TNF-α and IL-1β,significantly down-regulated the expression levels of TLR4, MyD88, and NF-κB proteins and genes in colon tissue, as well as reduced histopathological damage. Therefore, the study suggests that alkaloids from Portulacae Herba can alleviate intestinal inflammation damage in DSS-induced UC mice, with its mechanism involving the TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Colitis, Ulcerative/immunology*
;
Toll-Like Receptor 4/immunology*
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Alkaloids/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Female
;
Colon/metabolism*
;
Disease Models, Animal
2.Role of Toll-like receptors in persistent infection of cervical high-risk human papillomavirus based on "latent pathogen theory".
Dan-Dan HONG ; Ting-Ting SHANG ; Hong-Yu GUO ; Wen-Ting ZUO ; Rui SUN ; Wen-Wen XU ; Qing-Ling REN
China Journal of Chinese Materia Medica 2025;50(7):1974-1979
Persistent infection with high-risk human papillomavirus(HR-HPV) is the primary etiological factor in cervical lesions and cervical cancer. Toll-like receptors(TLRs), as important pattern recognition receptors of the innate immune system, play a key role in the persistence of cervical HR-HPV infection. The "latent pathogen theory" in traditional Chinese medicine(TCM) holds that latent pathogens have both "latent" and "triggered" characteristics, which closely resemble the persistent infection and latent pathogenic potential of cervical HR-HPV. Guided by the "latent pathogen theory" and using contemporary immunological techniques, this paper explores the bidirectional immunomodulatory effects of TLRs in the persistence of cervical HR-HPV infection and their relationship with latent pathogens. The results indicate that TLRs play a crucial role in immune recognition and modulation. Dysregulation and overactivation of TLRs can induce chronic inflammation, allowing cervical HR-HPV to persist and evade immune detection. TLR dysfunction, coupled with a deficiency in healthy Qi that prevents the expulsion of pathogens, is a critical factor in the pathogenicity of latent pathogens. Restoring healthy Qi to modulate the immune functions of TLRs emerges as an important strategy for clearing cervical HR-HPV infection. By harmonizing the spleen and kidney and regulating immune balance, it is possible to reverse cervical HR-HPV infection, providing a scientific basis for clinical research.
Humans
;
Toll-Like Receptors/genetics*
;
Female
;
Papillomavirus Infections/genetics*
;
Papillomaviridae/immunology*
;
Persistent Infection/genetics*
;
Uterine Cervical Neoplasms/immunology*
;
Animals
;
Medicine, Chinese Traditional
;
Cervix Uteri/immunology*
;
Human Papillomavirus Viruses
3.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
4.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
5.Study on protective effect of arbutin in yam on acute lung injury and its metabolic regulation mechanism.
Kai-Li YE ; Meng-Nan ZENG ; Feng-Xiao HAO ; Peng-Li GUO ; Yu-Han ZHANG ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(15):4100-4109
This study investigated the protective effect of arbutin(Arb) in yam on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in a mouse model and revealed its possible mechanism of action by metabolomics technology, providing a theoretical basis for clinical treatment of ALI. SPF BALB/c mice were randomly divided into normal control group, model group, resveratrol(Rv)-positive control group, Arb low-dose(15 mg·kg~(-1)) group, and Arb high-dose(30 mg·kg~(-1)) group. The LPS-induced ALI model was established in all groups except the normal control group. Hematoxylin-eosin(HE) staining, TUNEL staining, and WBP whole-body non-invasive pulmonary function testing were used to evaluate the degree of lung tissue damage and lung function changes. Enzyme-linked immunosorbent assay(ELISA) was used to detect the level of inflammatory factors in lung tissue. Flow cytometry was used to analyze the M1/M2 polarization status of macrophages in lung tissue. Western blot was used to detect the expression levels of the TLR4 signaling pathway and related apoptotic proteins. Liquid chromatograph-mass spectrometer(LC-MS) metabolomics was used to analyze the changes in serum metabolic profile after Arb intervention. The results showed that Arb pretreatment significantly alleviated LPS-induced lung tissue injury, improved lung function, reduced the levels of pro-inflammatory factors(IL-6, TNF-α, IL-18, and IL-1β), and regulated the polarization status of M1/M2 macrophages. In addition, Arb inhibited the activation of the TLR4 signaling pathway, reduced the expression of pro-apoptotic proteins such as Bax, caspase-3, and caspase-9, up-regulated the level of Bcl-2 protein, and inhibited apoptosis of lung cells. Metabolomic analysis showed that Arb significantly improved LPS-induced metabolic abnormalities, mainly involving key pathways such as galactose metabolism, phenylalanine metabolism, and lipid metabolism. In summary, Arb can significantly reduce LPS-induced ALI by regulating the release of inflammatory factors, inhibiting the activation of the TLR4 signaling pathway, improving metabolic disorders, and regulating macrophage polarization, indicating that Arb has potential clinical application value.
Animals
;
Acute Lung Injury/chemically induced*
;
Mice
;
Mice, Inbred BALB C
;
Arbutin/administration & dosage*
;
Male
;
Toll-Like Receptor 4/immunology*
;
Apoptosis/drug effects*
;
Lung/metabolism*
;
Signal Transduction/drug effects*
;
Protective Agents/administration & dosage*
;
Humans
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
6.Mechanism of Sorbus tianschanica in regulating asthmatic airway inflammation through TLR4/PI3K/Akt/MMP9 signaling pathway.
Wen-Kai WANG ; Jun-Min CHANG ; Xiao-Li MA ; Gai-Ru LI
China Journal of Chinese Materia Medica 2025;50(15):4304-4314
To investigate the effects and mechanisms of the water extract from Sorbus tianschanica(STE) on asthmatic airway inflammation, the mice were randomly divided into six groups, including a control group, a model group, a positive drug dexamethasone group(2 mg·kg~(-1)), a low-dose STE group(1 g·kg~(-1)), a medium-dose STE group(2 g·kg~(-1)), and a high-dose STE group(4 g·kg~(-1)). Except for the control group, all groups were subjected to ovalbumin induction to establish an asthma mouse model. The anti-inflammatory effects of STE were evaluated by examining pathological changes in lung tissue and measuring the levels of interleukin(IL)-4 and IL-5 in bronchoalveolar lavage fluid(BALF). Transcriptomic and proteomic methods were further employed to analyze differentially expressed genes and proteins, as well as their associated signaling pathways in lung tissue. Subsequently, the expression changes of key genes were verified by reverse transcription-quantitative polymerase chain reaction(RT-qPCR), and immunohistochemistry and Western blot methods were used to explore the regulatory mechanisms of STE in the pathogenesis of asthma in mice. Molecular docking was performed by using AutoDock Vina software to evaluate the binding affinity of the main active components in STE with the target proteins, including phosphatidylinositol-3-kinase catalytic subunit α(PIK3CA), Toll-like receptor 4(TLR4), protein kinase B1(Akt1), and matrix metallopeptidase 9(MMP9). The results showed significant inflammatory cell infiltration and fibrous tissue proliferation in the lung tissue of mice in the model group. However, these pathological changes were markedly reduced following STE intervention. Compared with those of the control group, the expression levels of IL-4 and IL-5 in the BALF of the model group were significantly increased but notably decreased following STE intervention. Transcriptomic and proteomic analyses identified key genes and proteins associated with allergic asthma, including tumor necrosis factor(TNF), IL-6, TLR4, PIK3CA, and MMP9. RT-qPCR validation revealed that high-dose STE intervention significantly downregulated the expressions of PIK3CA, IL-6, Akt1, MMP9, IL-13, nuclear factor-kappa B(NF-κB), TNF, CXC motif chemokine ligand 1(CXCL1), and TLR4 mRNAs and significantly upregulated the expression of signal transducer and activator of transcription 1(STAT1) mRNA. Western blot and immunohistochemical analyses confirmed that STE significantly downregulated the expressions of MMP9, TLR4, PIK3CA, and phosphorylated protein kinase B(p-Akt) in lung tissue of asthmatic mice. Moreover, molecular docking demonstrated that kaempferol-3,7-diglucoside, isoquercitrin, quercetin-3-gentiobioside, and hyperoside in STE exhibited stable binding affinities with PIK3CA, TLR4, Akt1, and MMP9, suggesting that the active components may exert anti-inflammatory effects by targeting and modulating asthma-related signaling pathways. In summary, STE exerts anti-asthmatic effects by inhibiting the expressions of PIK3CA, MMP9, p-Akt, and TLR4 and regulating the TLR4/PI3K/Akt/MMP9 signaling pathway.
Animals
;
Asthma/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Mice, Inbred BALB C
;
Drugs, Chinese Herbal/administration & dosage*
;
Female
;
Humans
;
Lung/immunology*
;
Male
7.Research advances in the mechanism of Toll-like receptor 4 mediated intestinal injury and inflammatory response in necrotizing enterocolitis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):57-63
Necrotizing enterocolitis (NEC) is an intestinal inflammatory and necrotic disease seen in premature infants, and remains the leading cause of death resulted from gastrointestinal diseases in premature infants. The specific pathogenesis of NEC is still unclear. In recent years, a lot of studies have reported that Toll-like receptor 4 (TLR4) plays a key role in the pathogenesis of NEC. TLR4, which is abundantly expressed in intestinal epithelial cells of premature infants, binds to bacterial lipopolysaccharide (LPS) to activate downstream signaling pathways, leading to disruption of intestinal epithelial integrity and bacterial translocation, resulting in intestinal ischemic necrosis and inflammatory responses, which may rapidly progress to severe sepsis, multiple organ dysfunction, and death. This paper reviews the mechanism of TLR4-related signaling pathways in intestinal epithelial injury and inflammatory responses in newborns with NEC, providing a reference to study new therapeutic targets for NEC.
Enterocolitis, Necrotizing/pathology*
;
Toll-Like Receptor 4/metabolism*
;
Humans
;
Infant, Newborn
;
Signal Transduction
;
Inflammation/metabolism*
;
Animals
;
Intestines/immunology*
;
Intestinal Mucosa/pathology*
;
Infant, Premature
8.Effect of aquaporin 5 on TLR4/MyD88/NF-κB signaling pathway in Sjögren syndrome rats.
Lixiu ZHU ; Renli CHEN ; Sujuan ZHOU ; Ye LIN ; Yirong TANG ; Zhen YE
Journal of Peking University(Health Sciences) 2025;57(5):875-883
OBJECTIVE:
To investigate the effect of aquaporin 5 (AQP5) on Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in Sjögren syndrome (SS) rats.
METHODS:
The SS gene expression data sets GSE406611 and GSE84844 were extracted from the Gene Expression Omnibus (GEO), and the AQP5 mRNA expression was analyzed by R software. The rat SS model was constructed. The successfully modeled rats were divided into SS group, SS+NC group, and SS+pc group, 10 rats in each group; and 10 rats were set as Normal group. The rats in the SS+NC group were injected with 10 μg of rno-pcDNA3.1-AQP5-NC at the submandibular gland, subcutaneously every day for 28 days. The rats in the SS+pc group were injected with 10 μg of rno-pcDNA3.1-AQP5 at the submandibular gland, subcutaneously every day for 28 days. The enzyme-linked immunosorbent assay (ELISA) kit was used to detect the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the serum. High-throughput sequencing was used to identify the target genes. Quantitative real-time PCR (qPCR) and Western blot were used to detect the mRNA and protein expressions of AQP5, TLR4, MyD88, and NF-κB in the rat submandibular gland tissue.
RESULTS:
In the SS dataset GSE406611 and GSE84844, the mRNA expression of AQP5 in SS was significantly reduced. Compared with the Normal group, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS group were significantly increased, the mRNA and protein expressions of AQP5 were significantly decreased. After overexpression of AQP5, the content of TNF-α and IL-1β in the serum, the mRNA and protein expressions of TLR4, MyD88, and NF-κB in the SS+pc group were significantly decreased, the mRNA and protein expressions of AQP5 were significantly increased. The differences were statistically significant (all P < 0.05).
CONCLUSION
The expression of AQP5 is involved in the progression of SS. Increasing the expression of AQP5 can significantly inhibit inflammatory stress and reduce the pathological damage of submandibular gland tissue. This may be related to the inhibition of TLR4/MyD88/NF-κB conduction.
Animals
;
Toll-Like Receptor 4/genetics*
;
Myeloid Differentiation Factor 88/genetics*
;
Aquaporin 5/metabolism*
;
Sjogren's Syndrome/genetics*
;
Signal Transduction
;
NF-kappa B/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Interleukin-1beta/metabolism*
;
Female
9.Distribution of pathogenic bacteria in ear canal secretions of patients with chronic suppurative otitis media, changes in levels of IL-8 and TLR4 in ear canal secretions, and their clinical significance.
Xiuqin CHENG ; Li YANG ; Jia LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(6):564-569
Objective:To investigate the distribution of pathogenic bacteria in the ear canal secretions of patients with chronic suppurative otitis media(CSOM), the changes in the levels of interleukin-8(IL-8) and Toll like receptor 4(TLR4) in the ear canal secretions, and their clinical significance. Methods:This study selected 128 CSOM patients who visited our hospital from January 2022 to February 2024 as the study subjects and recorded them as the CSOM group. Additionally, 135 volunteers who underwent physical examinations at our hospital during the same period were regarded as the control group. Video otoscopy was used to collect and cultivate ear canal secretions, and a fully automated microbial identification instrument was used to identify the bacterial species. ELISA was applied to detect levels of IL-8, TLR4. Multivariate logistic regression was employed to examine the factors that affect the occurrence of CSOM. Pearson correlation was applied to analyze the correlation between IL-8, TLR4 levels and various influencing factors. ROC curve was applied to analyze the diagnostic value of IL-8 and TLR4 levels for the occurrence of CSOM. Z-test was applied to compare the differences in AUC. Results:Among 128 patients, the detection rate was 89.06%, and a total of 181 strains of pathogenic bacteria were cultured, among them, Gram positive bacteria accounted for the highest proportion of 54.14%, followed by Gram negative bacteria, accounting for 34.25%, and finally fungi, accounting for 11.60%. The common bacteria were Staphylococcus aureus (20.44%), Pseudomonas aeruginosa (13.26%), and Staphylococcus epidermidis (8.29%). The resistance of Gram-positive bacteria to penicillin, clindamycin, erythromycin, and amoxicillin is high. Gram-negative bacteria are highly resistant to penicillin, ampicillin and erythromycin. Fungi are resistant to ketoconazole and fluconazole. The levels of IL-8 and TLR4 in CSOM group were higher than those in the control group, and gradually increased with the increase of hearing impairment. (P<0.05). Elevated levels of IL-8, TLR4 were independent risk factors for the occurrence of CSOM(P<0.05). The AUC of CSOM diagnosed by IL-8 and TLR4 alone was 0.790 and 0.777, respectively, while the AUC of combined diagnosis was 0.898, which was better than their respective individual diagnoses(both P<0.05). Conclusion:The distribution of pathogenic bacteria in the ear canal secretions of CSOM patients is mainly Gram positive, with common ones being Staphylococcus aureus and Pseudomonas aeruginosa. The levels of IL-8 and TLR4 in CSOM patients are higher than those in the control group. The higher the levels, the higher the degree of hearing loss, which can be used for clinical diagnosis.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Interleukin-8/metabolism*
;
Otitis Media, Suppurative/metabolism*
;
Ear Canal/metabolism*
;
Chronic Disease
;
Male
;
Female
;
Adult
;
Middle Aged
;
Clinical Relevance
10.Huoxue Shufeng Granule alleviates central sensitization in chronic migraine mice via TLR4/NF-κB inflammatory pathway.
Xiaotao LIANG ; Yifan XIONG ; Xueqi LIU ; Xiaoshan LIANG ; Xiaoyu ZHU ; Wei XIE
Journal of Southern Medical University 2025;45(5):986-994
OBJECTIVES:
To investigate the therapeutic mechanism of Huoxue Shufeng Granules (HXSFG) for alleviating central sensitization in a mouse model of chronic migraine (CM).
METHODS:
We analyzed the main chemical components of HXSFG through literature review and explored their pharmacological mechanisms by bioinformatics analyses. In a male C57BL/6J mouse model of CM established by intraperitoneal injections of nitroglycerin (10 mg/kg) every other day (5 injections), the effects of gavage with low, and high doses of HXSFG or intraperitoneal injections of topiramate for ameliorating central sensitization were evaluated using Von Frey test and a hot plate apparatus; the changes in expressions of inflammatory factors, the proteins in the TLR4/NF‑κB signaling pathway, and activation of c-Fos and CGRP were detected using RT-qPCR, Western blotting and immunofluorescence staining.
RESULTS:
Network pharmacology analysis suggested that the main active components in HXSFG for alleviating CM included formononetin, paeoniflorin, quercetin, and tanshinone. Gene Ontology (GO) enrichment analysis identified 492 GO entries, comprising 366 biological processes, 46 cellular components, and 80 molecular functions. KEGG pathway enrichment analysis indicated that the Toll-like receptor and NF‑κB signaling pathways were crucial in mediating the therapeutic effects of HXSFG on CM. In the mouse models of CM, both topiramate and HXSFG treatments alleviated the symptoms of central sensitization, evidenced by improved mechanical and thermal pain thresholds in the mice. HXSFG significantly reduced the expression of c-Fos and CGRP, improved inflammatory markers, and downregulated the expressions of TLR4, p-NF‑κB, IL-1β, and TNF‑α proteins in the mouse models.
CONCLUSIONS
HXSFG effectively alleviates central sensitization in CM mice by modulating the inflammatory pathways and inhibiting the TLR4/ NF-κB signaling pathway, suggesting its potential as a therapeutic option for CM.
Animals
;
Toll-Like Receptor 4/metabolism*
;
NF-kappa B/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Migraine Disorders/metabolism*
;
Disease Models, Animal
;
Inflammation

Result Analysis
Print
Save
E-mail